BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27112731)

  • 1. Association of Bio-energy Processing-Induced Protein Molecular Structure Changes with CNCPS-Based Protein Degradation and Digestion of Co-products in Dairy Cows.
    Li X; Zhang Y; Yu P
    J Agric Food Chem; 2016 May; 64(20):4086-94. PubMed ID: 27112731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational spectroscopic study on feed molecular structure properties of oil-seeds and co-products from Canadian and Chinese bio-processing and relationship with protein and carbohydrate degradation fractions in ruminant systems.
    Gomaa WMS; Zhang X; Deng H; Peng Q; Mosaad GM; Zhang H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():249-257. PubMed ID: 30904632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detect the sensitivity and response of protein molecular structure of whole canola seed (yellow and brown) to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics.
    Samadi ; Theodoridou K; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():304-13. PubMed ID: 23318774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical profile, energy values, and protein molecular structure characteristics of biofuel/bio-oil co-products (carinata meal) in comparison with canola meal.
    Xin H; Yu P
    J Agric Food Chem; 2013 Apr; 61(16):3926-33. PubMed ID: 23581565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes on a molecular basis of canola meal by conditioning temperature and time during pelleting process in relation to physiochemical (energy and protein) properties relevant to ruminants.
    Huang X; Zhang H; Yu P
    PLoS One; 2017; 12(2):e0170173. PubMed ID: 28207756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.
    Ban Y; L Prates L; Yu P
    J Agric Food Chem; 2017 Oct; 65(41):9147-9157. PubMed ID: 28933547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of FT/IR-ATR vibrational spectroscopy to reveal protein molecular structure of feedstock and co-products from Canadian and Chinese canola processing in relation to microorganism bio-degradation and enzyme bio-digestion.
    Gomaa WMS; Peng Q; Prates LL; Mosaad GM; Aamer H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():791-797. PubMed ID: 30096732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.
    Zhang X; Yu P
    J Dairy Sci; 2012 Jun; 95(6):3363-79. PubMed ID: 22612970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on Brassica carinata seed. 1. Protein molecular structure in relation to protein nutritive values and metabolic characteristics.
    Xin H; Falk KC; Yu P
    J Agric Food Chem; 2013 Oct; 61(42):10118-26. PubMed ID: 24059852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.
    Theodoridou K; Zhang X; Vail S; Yu P
    J Agric Food Chem; 2015 Jun; 63(22):5476-84. PubMed ID: 25996818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds.
    Peng Q; Khan NA; Wang Z; Yu P
    J Dairy Sci; 2014; 97(1):446-57. PubMed ID: 24239075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.
    Zhang X; Yu P
    J Agric Food Chem; 2014 Jul; 62(26):6199-205. PubMed ID: 24920208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using advanced vibrational molecular spectroscopy (ATR-Ft/IRS) to study heating process induced changes on protein molecular structure of biodegradation residues in cool-climate adapted faba bean seeds: Relationship with rumen and intestinal protein digestion in ruminant systems.
    Deng G; Rodríguez-Espinosa ME; Feng X; Guevara-Oquendo VH; Lei Y; Yan M; Yang JC; Zhang H; Deng H; Zhang W; Peng Q; Samadi ; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118220. PubMed ID: 32200231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle.
    Theodoridou K; Yu P
    J Agric Food Chem; 2013 Jun; 61(23):5449-58. PubMed ID: 23683050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of protein molecular structure to metabolisable proteins in different types of dried distillers grains with solubles: a novel approach.
    Yu P; Nuez-Ortín WG
    Br J Nutr; 2010 Nov; 104(10):1429-37. PubMed ID: 20594396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.
    Yu P
    J Agric Food Chem; 2013 Feb; 61(7):1471-6. PubMed ID: 23350902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans.
    Samadi ; Yu P
    J Dairy Sci; 2011 Dec; 94(12):6092-102. PubMed ID: 22118096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Mar; 36(3):451-460. PubMed ID: 35798035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic characteristics of the proteins in yellow-seeded and brown-seeded canola meal and presscake in dairy cattle: comparison of three systems (PDI, DVE, and NRC) in nutrient supply and feed milk value (FMV).
    Theodoridou K; Yu P
    J Agric Food Chem; 2013 Mar; 61(11):2820-30. PubMed ID: 23410190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.