These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27112932)
1. Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. Huang YA; You ZH; Chen X; Chan K; Luo X BMC Bioinformatics; 2016 Apr; 17(1):184. PubMed ID: 27112932 [TBL] [Abstract][Full Text] [Related]
2. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. Huang YA; You ZH; Chen X; Yan GY BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718 [TBL] [Abstract][Full Text] [Related]
3. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY; You ZH; Meng FR; Xu SJ; Wang Y Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
5. Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence. Huang YA; You ZH; Gao X; Wong L; Wang L Biomed Res Int; 2015; 2015():902198. PubMed ID: 26634213 [TBL] [Abstract][Full Text] [Related]
6. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983 [TBL] [Abstract][Full Text] [Related]
7. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. You ZH; Chan KC; Hu P PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106 [TBL] [Abstract][Full Text] [Related]
8. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation. Li Y; Wang Z; You ZH; Li LP; Hu X Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Protein-Protein Interactions from Amino Acid Sequences Based on Continuous and Discrete Wavelet Transform Features. Wang T; Li L; Huang YA; Zhang H; Ma Y; Zhou X Molecules; 2018 Apr; 23(4):. PubMed ID: 29617272 [TBL] [Abstract][Full Text] [Related]
10. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483 [TBL] [Abstract][Full Text] [Related]
11. Multi-scale encoding of amino acid sequences for predicting protein interactions using gradient boosting decision tree. Zhou C; Yu H; Ding Y; Guo F; Gong XJ PLoS One; 2017; 12(8):e0181426. PubMed ID: 28792503 [TBL] [Abstract][Full Text] [Related]
12. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Guo Y; Yu L; Wen Z; Li M Nucleic Acids Res; 2008 May; 36(9):3025-30. PubMed ID: 18390576 [TBL] [Abstract][Full Text] [Related]
13. Protein-Protein Interactions Prediction Based on Graph Energy and Protein Sequence Information. Xu D; Xu H; Zhang Y; Chen W; Gao R Molecules; 2020 Apr; 25(8):. PubMed ID: 32316294 [TBL] [Abstract][Full Text] [Related]
14. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. You ZH; Zhu L; Zheng CH; Yu HJ; Deng SP; Ji Z BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S9. PubMed ID: 25474679 [TBL] [Abstract][Full Text] [Related]
15. Using Weighted Extreme Learning Machine Combined With Scale-Invariant Feature Transform to Predict Protein-Protein Interactions From Protein Evolutionary Information. Li J; Shi X; You ZH; Yi HC; Chen Z; Lin Q; Fang M IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1546-1554. PubMed ID: 31940546 [TBL] [Abstract][Full Text] [Related]
16. Highly Accurate Prediction of Protein-Protein Interactions via Incorporating Evolutionary Information and Physicochemical Characteristics. Li ZW; You ZH; Chen X; Gui J; Nie R Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27571061 [TBL] [Abstract][Full Text] [Related]
17. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences. Wang J; Zhang L; Jia L; Ren Y; Yu G Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117139 [TBL] [Abstract][Full Text] [Related]
18. Detection of Interactions between Proteins by Using Legendre Moments Descriptor to Extract Discriminatory Information Embedded in PSSM. Wang YB; You ZH; Li LP; Huang YA; Yi HC Molecules; 2017 Aug; 22(8):. PubMed ID: 28820478 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation. Huang Q; You Z; Zhang X; Zhou Y Int J Mol Sci; 2015 May; 16(5):10855-69. PubMed ID: 25984606 [TBL] [Abstract][Full Text] [Related]
20. Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. You ZH; Li J; Gao X; He Z; Zhu L; Lei YK; Ji Z Biomed Res Int; 2015; 2015():867516. PubMed ID: 26000305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]