These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 27113440)
1. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism. Savoglidis G; da Silveira Dos Santos AX; Riezman I; Angelino P; Riezman H; Hatzimanikatis V Metab Eng; 2016 Sep; 37():46-62. PubMed ID: 27113440 [TBL] [Abstract][Full Text] [Related]
2. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. Borklu Yucel E; Ulgen KO Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632 [TBL] [Abstract][Full Text] [Related]
3. Genome-Scale Ando D; García Martín H Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239 [TBL] [Abstract][Full Text] [Related]
4. Stoichiometric network reconstruction and analysis of yeast sphingolipid metabolism incorporating different states of hydroxylation. Kavun Ozbayraktar FB; Ulgen KO Biosystems; 2011 Apr; 104(1):63-75. PubMed ID: 21215790 [TBL] [Abstract][Full Text] [Related]
5. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Latimer LN; Dueber JE Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212 [TBL] [Abstract][Full Text] [Related]
7. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Sánchez BJ; Nielsen J Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294 [TBL] [Abstract][Full Text] [Related]
8. Yeast sphingolipids: metabolism and biology. Obeid LM; Okamoto Y; Mao C Biochim Biophys Acta; 2002 Dec; 1585(2-3):163-71. PubMed ID: 12531550 [TBL] [Abstract][Full Text] [Related]
9. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Suástegui M; Guo W; Feng X; Shao Z Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047 [TBL] [Abstract][Full Text] [Related]
10. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. Alvarez-Vasquez F; Sims KJ; Cowart LA; Okamoto Y; Voit EO; Hannun YA Nature; 2005 Jan; 433(7024):425-30. PubMed ID: 15674294 [TBL] [Abstract][Full Text] [Related]
11. Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae. Mishra S; Wang Z; Volk MJ; Zhao H Metab Eng; 2023 Jan; 75():12-18. PubMed ID: 36371031 [TBL] [Abstract][Full Text] [Related]
12. Protection mechanisms against aberrant metabolism of sphingolipids in budding yeast. Tani M; Funato K Curr Genet; 2018 Oct; 64(5):1021-1028. PubMed ID: 29556757 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Wu G; Yan Q; Jones JA; Tang YJ; Fong SS; Koffas MAG Trends Biotechnol; 2016 Aug; 34(8):652-664. PubMed ID: 26996613 [TBL] [Abstract][Full Text] [Related]
14. Making Sense of the Yeast Sphingolipid Pathway. Megyeri M; Riezman H; Schuldiner M; Futerman AH J Mol Biol; 2016 Dec; 428(24 Pt A):4765-4775. PubMed ID: 27664439 [TBL] [Abstract][Full Text] [Related]
15. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis. Ikeda A; Muneoka T; Murakami S; Hirota A; Yabuki Y; Karashima T; Nakazono K; Tsuruno M; Pichler H; Shirahige K; Kodama Y; Shimamoto T; Mizuta K; Funato K J Cell Sci; 2015 Jul; 128(14):2454-67. PubMed ID: 26045446 [TBL] [Abstract][Full Text] [Related]
16. Distinct roles for de novo versus hydrolytic pathways of sphingolipid biosynthesis in Saccharomyces cerevisiae. Cowart LA; Okamoto Y; Lu X; Hannun YA Biochem J; 2006 Feb; 393(Pt 3):733-40. PubMed ID: 16201964 [TBL] [Abstract][Full Text] [Related]
17. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data. Kuehne A; Mayr U; Sévin DC; Claassen M; Zamboni N PLoS Comput Biol; 2017 Jun; 13(6):e1005577. PubMed ID: 28598965 [TBL] [Abstract][Full Text] [Related]
18. Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. Esch BM; Limar S; Bogdanowski A; Gournas C; More T; Sundag C; Walter S; Heinisch JJ; Ejsing CS; André B; Fröhlich F PLoS Genet; 2020 Aug; 16(8):e1008745. PubMed ID: 32845888 [TBL] [Abstract][Full Text] [Related]
19. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks. Andreozzi S; Miskovic L; Hatzimanikatis V Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788 [TBL] [Abstract][Full Text] [Related]
20. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Liu S; Chen M; Wang Y; Lei Y; Huang T; Zhang Y; Lam SM; Li H; Qi S; Geng J; Lu K Nat Commun; 2023 Jun; 14(1):3725. PubMed ID: 37349354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]