These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27113455)

  • 21. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-Field Mapping of Photonic Eigenmodes in Patterned Silicon Nanocavities by Electron Energy-Loss Spectroscopy.
    Alexander DTL; Flauraud V; Demming-Janssen F
    ACS Nano; 2021 Oct; 15(10):16501-16514. PubMed ID: 34585583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.
    Liu Y; Hamon AL; Haghi-Ashtiani P; Reiss T; Fan B; He D; Bai J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34151-34158. PubMed ID: 27960430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of valence electron energy-loss spectra of aluminium nitride.
    Dorneich AD; French RH; Müllejans H; Loughin S; Rühle M
    J Microsc; 1998 Sep; 191(3):286-296. PubMed ID: 9767493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications.
    Eljarrat A; López-Conesa L; Estradé S; Peiró F
    J Microsc; 2016 May; 262(2):142-50. PubMed ID: 26366876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon modes of a silver thin film taper probed with STEM-EELS.
    Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography.
    Haberfehlner G; Schmidt FP; Schaffernak G; Hörl A; Trügler A; Hohenau A; Hofer F; Krenn JR; Hohenester U; Kothleitner G
    Nano Lett; 2017 Nov; 17(11):6773-6777. PubMed ID: 28981295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and application of a relativistic Kramers-Kronig analysis algorithm.
    Eljarrat A; Koch CT
    Ultramicroscopy; 2019 Nov; 206():112825. PubMed ID: 31400584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic structure analysis of (In, Ga, Al) N heterostructures on the nanometre scale using EELS.
    Lakner H; Rafferty B; Brockt G
    J Microsc; 1999 Apr; 194(1):79-83. PubMed ID: 10320542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measuring the dielectric constant of materials from valence EELS.
    Potapov PL; Engelmann HJ; Zschech E; Stöger-Pollach M
    Micron; 2009 Feb; 40(2):262-8. PubMed ID: 18755592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of Charge Transfer at the Interfaces of Oxide Thin Films.
    Meng Q; Xu G; Xin H; Stach EA; Zhu Y; Su D
    J Phys Chem A; 2019 May; 123(21):4632-4637. PubMed ID: 31050895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2.
    Venkatraman K; Rez P; March K; Crozier PA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i14-i23. PubMed ID: 29401291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact of surface and retardation losses on valence electron energy-loss spectroscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2008 Jan; 108(2):84-99. PubMed ID: 17481821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treating retardation effects in valence EELS spectra for Kramers-Kronig analysis.
    Stöger-Pollach M; Laister A; Schattschneider P
    Ultramicroscopy; 2008 Apr; 108(5):439-44. PubMed ID: 17689868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS.
    Eljarrat A; López-Conesa L; Magén C; García-Lepetit N; Gačević Ž; Calleja E; Peiró F; Estradé S
    Phys Chem Chem Phys; 2016 Aug; 18(33):23264-76. PubMed ID: 27499340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime.
    Scholl JA; Garcia-Etxarri A; Aguirregabiria G; Esteban R; Narayan TC; Koh AL; Aizpurua J; Dionne JA
    ACS Nano; 2016 Jan; 10(1):1346-54. PubMed ID: 26639023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of bulk and surface-losses in low-loss EELS measurements in STEM.
    Mkhoyan KA; Babinec T; Maccagnano SE; Kirkland EJ; Silcox J
    Ultramicroscopy; 2007; 107(4-5):345-55. PubMed ID: 17074441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.