BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27113462)

  • 21. Dual microRNAs-Fueled DNA Nanogears: A Case of Regenerated Strategy for Multiple Electrochemiluminescence Detection of microRNAs with Single Luminophore.
    Zhang P; Lin Z; Zhuo Y; Yuan R; Chai Y
    Anal Chem; 2017 Jan; 89(2):1338-1345. PubMed ID: 27990821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application.
    Ye Z; Liu Y; Pan M; Tao X; Chen Y; Ma P; Zhuo Y; Song D
    Biosens Bioelectron; 2023 May; 228():115219. PubMed ID: 36913885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile electrochemiluminescent biosensor for protein-nucleic acid interaction based on the unique quenching effect of deoxyguanosine-5'-phosphate on electrochemiluminescence of CdTe/ZnS quantum dots.
    Zhao P; Zhou L; Nie Z; Xu X; Li W; Huang Y; He K; Yao S
    Anal Chem; 2013 Jul; 85(13):6279-86. PubMed ID: 23742234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.
    Shan Y; Xu JJ; Chen HY
    Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine.
    Zhao J; Chen M; Yu C; Tu Y
    Analyst; 2011 Oct; 136(19):4070-4. PubMed ID: 21853173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging.
    Yong KT; Roy I; Law WC; Hu R
    Chem Commun (Camb); 2010 Oct; 46(38):7136-8. PubMed ID: 20820500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives.
    Liu X; Jiang H; Lei J; Ju H
    Anal Chem; 2007 Nov; 79(21):8055-60. PubMed ID: 17910416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of ethanol using permanganate-CdS quantum dot chemiluminescence system.
    Abolhasani J; Hassanzadeh J
    Luminescence; 2015 Aug; 30(5):660-7. PubMed ID: 25345928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-dependent active effect of cadmium telluride quantum dots on luminol-potassium periodate chemiluminescence system for levodopa detection.
    Wang J; Cui L; Han S; Hao F
    Appl Spectrosc; 2015 Jun; 69(6):699-704. PubMed ID: 25955029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ energy transfer quenching of quantum dot electrochemiluminescence for sensitive detection of cancer biomarkers.
    Yang M; Chen Y; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2013 Dec; 50():393-8. PubMed ID: 23891869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay.
    Huang T; Meng Q; Jie G
    Biosens Bioelectron; 2015 Apr; 66():84-8. PubMed ID: 25460886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex.
    Fu X; Tan X; Yuan R; Chen S
    Biosens Bioelectron; 2017 Apr; 90():61-68. PubMed ID: 27883960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly luminescent quantum-dot monoliths.
    Arachchige IU; Brock SL
    J Am Chem Soc; 2007 Feb; 129(7):1840-1. PubMed ID: 17256934
    [No Abstract]   [Full Text] [Related]  

  • 34. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle.
    Liu X; Ju H
    Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis.
    Hu X; Wang R; Ding Y; Zhang X; Jin W
    Talanta; 2010 Mar; 80(5):1737-43. PubMed ID: 20152405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates.
    Cooper DR; Suffern D; Carlini L; Clarke SJ; Parbhoo R; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2009 Jun; 11(21):4298-310. PubMed ID: 19458832
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-organized tubular structures as platforms for quantum dots.
    Makki R; Ji X; Mattoussi H; Steinbock O
    J Am Chem Soc; 2014 Apr; 136(17):6463-9. PubMed ID: 24702437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrogenerated chemiluminescence of CdSe quantum dots dispersed in aqueous solution.
    Han H; You Z; Liang J; Sheng Z
    Front Biosci; 2007 Jan; 12():2352-7. PubMed ID: 17127245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis.
    Feng Y; Wang N; Ju H
    Anal Chem; 2018 Jan; 90(2):1202-1208. PubMed ID: 29265809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trace Analysis of Sinomenine Hydrochloride Using CdTe/CdS Quantum Dots-enhanced Chemiluminescence.
    Wu K; Han S
    Anal Sci; 2015; 31(12):1249-53. PubMed ID: 26656813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.