These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 27113684)
1. UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Luo F; Yan C; Dang L; Krishna R; Zhou W; Wu H; Dong X; Han Y; Hu TL; O'Keeffe M; Wang L; Luo M; Lin RB; Chen B J Am Chem Soc; 2016 May; 138(17):5678-84. PubMed ID: 27113684 [TBL] [Abstract][Full Text] [Related]
2. Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Lin RB; Li L; Wu H; Arman H; Li B; Lin RG; Zhou W; Chen B J Am Chem Soc; 2017 Jun; 139(23):8022-8028. PubMed ID: 28574717 [TBL] [Abstract][Full Text] [Related]
3. A Microporous Metal-Organic Framework with Lewis Basic Nitrogen Sites for High C2H2 Storage and Significantly Enhanced C2H2/CO2 Separation at Ambient Conditions. Wen HM; Wang H; Li B; Cui Y; Wang H; Qian G; Chen B Inorg Chem; 2016 Aug; 55(15):7214-8. PubMed ID: 27176900 [TBL] [Abstract][Full Text] [Related]
4. Ligand Charge Separation To Build Highly Stable Quasi-Isomer of MOF-74-Zn. Yang H; Peng F; Dang C; Wang Y; Hu D; Zhao X; Feng P; Bu X J Am Chem Soc; 2019 Jun; 141(25):9808-9812. PubMed ID: 31199634 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional pillar-layered copper(II) metal-organic framework with immobilized functional OH groups on pore surfaces for highly selective CO2/CH4 and C2H2/CH4 gas sorption at room temperature. Chen Z; Xiang S; Arman HD; Mondal JU; Li P; Zhao D; Chen B Inorg Chem; 2011 Apr; 50(8):3442-6. PubMed ID: 21425783 [TBL] [Abstract][Full Text] [Related]
6. CO Masala A; Vitillo JG; Mondino G; Grande CA; Blom R; Manzoli M; Marshall M; Bordiga S ACS Appl Mater Interfaces; 2017 Jan; 9(1):455-463. PubMed ID: 28005324 [TBL] [Abstract][Full Text] [Related]
7. Wet flue gas CO Chiu NC; Loughran RP; Gładysiak A; Vismara R; Park AA; Stylianou KC Nanoscale; 2022 Oct; 14(40):14962-14969. PubMed ID: 36200609 [TBL] [Abstract][Full Text] [Related]
8. A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. He Y; Zhang Z; Xiang S; Fronczek FR; Krishna R; Chen B Chemistry; 2012 Jan; 18(2):613-9. PubMed ID: 22162259 [TBL] [Abstract][Full Text] [Related]
9. Selective carbon dioxide sorption and heterogeneous catalysis by a new 3D Zn-MOF with nitrogen-rich 1D channels. Kim HC; Huh S; Kim SJ; Kim Y Sci Rep; 2017 Dec; 7(1):17185. PubMed ID: 29215053 [TBL] [Abstract][Full Text] [Related]
10. Acetylene Separation by a Ca-MOF Containing Accessible Sites of Open Metal Centers and Organic Groups. Wang GD; Li YZ; Zhang WF; Hou L; Wang YY; Zhu Z ACS Appl Mater Interfaces; 2021 Dec; 13(49):58862-58870. PubMed ID: 34870404 [TBL] [Abstract][Full Text] [Related]
11. UTSA-16 Growth within 3D-Printed Co-Kaolin Monoliths with High Selectivity for CO Lawson S; Al-Naddaf Q; Krishnamurthy A; Amour MS; Griffin C; Rownaghi AA; Knox JC; Rezaei F ACS Appl Mater Interfaces; 2018 Jun; 10(22):19076-19086. PubMed ID: 29750498 [TBL] [Abstract][Full Text] [Related]
12. A Copper-Based Metal-Organic Framework for C Wang X; Wang B; Zhang X; Xie Y; Arman H; Chen B Inorg Chem; 2021 Dec; 60(24):18816-18821. PubMed ID: 34870966 [TBL] [Abstract][Full Text] [Related]
13. Four Mixed-Ligand Zn(II) Three-Dimensional Metal-Organic Frameworks: Synthesis, Structural Diversity, and Photoluminescent Property. Wang CC; Ke SY; Cheng CW; Wang YW; Chiu HS; Ko YC; Sun NK; Ho ML; Chang CK; Chuang YC; Lee GH Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965945 [TBL] [Abstract][Full Text] [Related]
14. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal-organic framework. Franz DM; Dyott ZE; Forrest KA; Hogan A; Pham T; Space B Phys Chem Chem Phys; 2018 Jan; 20(3):1761-1777. PubMed ID: 29270586 [TBL] [Abstract][Full Text] [Related]
15. Predictive models of gas sorption in a metal-organic framework with open-metal sites and small pore sizes. Pham T; Forrest KA; Franz DM; Guo Z; Chen B; Space B Phys Chem Chem Phys; 2017 Jul; 19(28):18587-18602. PubMed ID: 28686253 [TBL] [Abstract][Full Text] [Related]
16. Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels. Kim HC; Huh S; Lee DN; Kim Y Dalton Trans; 2018 Apr; 47(14):4820-4826. PubMed ID: 29561002 [TBL] [Abstract][Full Text] [Related]
17. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Botas JA; Calleja G; Sánchez-Sánchez M; Orcajo MG Langmuir; 2010 Apr; 26(8):5300-3. PubMed ID: 20334392 [TBL] [Abstract][Full Text] [Related]
18. Merging open metal sites and Lewis basic sites in a NbO-type metal-organic framework for improved C2H2/CH4 and CO2/CH4 separation. Song C; Hu J; Ling Y; Feng Y; Chen DL; He Y Dalton Trans; 2015 Sep; 44(33):14823-9. PubMed ID: 26223674 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, crystal structure and photoluminescence of a three-dimensional zinc coordination compound with NBO-type topology. Liu X; Fu B; Li L; Jian YF; Shu S Acta Crystallogr C Struct Chem; 2019 Mar; 75(Pt 3):277-282. PubMed ID: 30833522 [TBL] [Abstract][Full Text] [Related]
20. Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. Kim J; Chen B; Reineke TM; Li H; Eddaoudi M; Moler DB; O'Keeffe M; Yaghi OM J Am Chem Soc; 2001 Aug; 123(34):8239-47. PubMed ID: 11516275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]