These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27113917)
1. The effect of thermal processing on the behaviour of peanut allergen peptide targets used in multiple reaction monitoring mass spectrometry experiments. Sayers RL; Johnson PE; Marsh JT; Barran P; Brown H; Mills EN Analyst; 2016 Jun; 141(13):4130-41. PubMed ID: 27113917 [TBL] [Abstract][Full Text] [Related]
2. Global proteomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts. Hebling CM; McFarland MA; Callahan JH; Ross MM J Agric Food Chem; 2013 Jun; 61(24):5638-48. PubMed ID: 23039025 [TBL] [Abstract][Full Text] [Related]
3. Influence of thermal processing on the allergenicity of peanut proteins. Mondoulet L; Paty E; Drumare MF; Ah-Leung S; Scheinmann P; Willemot RM; Wal JM; Bernard H J Agric Food Chem; 2005 Jun; 53(11):4547-53. PubMed ID: 15913323 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges. Johnson PE; Sayers RL; Gethings LA; Balasundaram A; Marsh JT; Langridge JI; Mills EN Anal Chem; 2016 Jun; 88(11):5689-95. PubMed ID: 27064171 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Separation Coupled to Mass Spectrometry for Quantification of Peanut Allergens in a Complex Food Matrix. Sayers RL; Gethings LA; Lee V; Balasundaram A; Johnson PE; Marsh JA; Wallace A; Brown H; Rogers A; Langridge JI; Mills ENC J Proteome Res; 2018 Jan; 17(1):647-655. PubMed ID: 29083186 [TBL] [Abstract][Full Text] [Related]
6. Determination of food allergens by LC-MS: Impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification. Korte R; Oberleitner D; Brockmeyer J J Proteomics; 2019 Mar; 196():131-140. PubMed ID: 30408562 [TBL] [Abstract][Full Text] [Related]
7. A multiple reaction monitoring method for determining peanut (Arachis hypogea) allergens in serum using quadrupole and time-of-flight mass spectrometry. Hands CM; Sayers RL; Nitride C; Gethings LA; Mills ENC Anal Bioanal Chem; 2020 May; 412(12):2815-2827. PubMed ID: 32125467 [TBL] [Abstract][Full Text] [Related]
8. Peanut protein extraction conditions strongly influence yield of allergens Ara h 1 and 2 and sensitivity of immunoassays. Walczyk NE; Smith PMC; Tovey ER; Roberts TH Food Chem; 2017 Apr; 221():335-344. PubMed ID: 27979211 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the Digestibility of the Major Peanut Allergens in Thermally Processed Peanuts and in Pure Form. Maleki SJ; Schmitt DA; Galeano M; Hurlburt BK Foods; 2014 May; 3(2):290-303. PubMed ID: 28234320 [TBL] [Abstract][Full Text] [Related]
10. Thermal processing of peanut impacts detection by current analytical techniques. Marsh JT; Jayasena S; Gaskin F; Baumert JL; Johnson P Food Chem; 2020 May; 313():126019. PubMed ID: 31931421 [TBL] [Abstract][Full Text] [Related]
11. Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). Chassaigne H; Nørgaard JV; Hengel AJ J Agric Food Chem; 2007 May; 55(11):4461-73. PubMed ID: 17474754 [TBL] [Abstract][Full Text] [Related]
12. Mass Spectrometry Analysis on the Breakage of Allergens in High-Molecular-Mass Polymer of Roasted Peanuts. Song M; Zhang Y; Zhu W; Zhou W; Li X; Yang A; Tong P; Wu Z; Chen H J Agric Food Chem; 2024 Feb; 72(6):3142-3149. PubMed ID: 38299554 [TBL] [Abstract][Full Text] [Related]
13. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, Western blotting and Q-TOF mass spectrometry. Chassaigne H; Trégoat V; Nørgaard JV; Maleki SJ; van Hengel AJ J Proteomics; 2009 Apr; 72(3):511-26. PubMed ID: 19223023 [TBL] [Abstract][Full Text] [Related]
14. Extraction Conditions Affect the Immunoreactivity of Peanut Allergens. Sharma GM; Chatim A; Ferguson M; Williams KM J Food Sci; 2019 Aug; 84(8):2357-2363. PubMed ID: 31364176 [TBL] [Abstract][Full Text] [Related]
16. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Lehmann K; Schweimer K; Reese G; Randow S; Suhr M; Becker WM; Vieths S; Rösch P Biochem J; 2006 May; 395(3):463-72. PubMed ID: 16372900 [TBL] [Abstract][Full Text] [Related]
17. Effects of cooking methods on peanut allergenicity. Beyer K; Morrow E; Li XM; Bardina L; Bannon GA; Burks AW; Sampson HA J Allergy Clin Immunol; 2001 Jun; 107(6):1077-81. PubMed ID: 11398088 [TBL] [Abstract][Full Text] [Related]
18. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Koppelman SJ; Wensing M; Ertmann M; Knulst AC; Knol EF Clin Exp Allergy; 2004 Apr; 34(4):583-90. PubMed ID: 15080811 [TBL] [Abstract][Full Text] [Related]
19. High-resolution mass spectrometry-based selection of peanut peptide biomarkers considering food processing and market type variation. Gavage M; Van Vlierberghe K; Van Poucke C; De Loose M; Gevaert K; Dieu M; Renard P; Arnould T; Gillard N Food Chem; 2020 Jan; 304():125428. PubMed ID: 31476548 [TBL] [Abstract][Full Text] [Related]
20. Effect of roasting history and buffer composition on peanut protein extraction efficiency. Poms RE; Capelletti C; Anklam E Mol Nutr Food Res; 2004 Nov; 48(6):459-64. PubMed ID: 15508181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]