These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27114231)

  • 21. Genomic reconstructions and potential metabolic strategies of generalist and specialist heterotrophic bacteria associated with an estuary Synechococcus culture.
    Zheng Q; Lu J; Wang Y; Jiao N
    FEMS Microbiol Ecol; 2019 Mar; 95(3):. PubMed ID: 30689834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seasonal Changes in Microbial Dissolved Organic Sulfur Transformations in Coastal Waters.
    Dixon JL; Hopkins FE; Stephens JA; Schäfer H
    Microorganisms; 2020 Feb; 8(3):. PubMed ID: 32120978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.
    Lidbury ID; Murrell JC; Chen Y
    ISME J; 2015 Mar; 9(3):760-9. PubMed ID: 25148480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere.
    Hopkins FE; Bell TG; Yang M; Suggett DJ; Steinke M
    Sci Rep; 2016 Oct; 6():36031. PubMed ID: 27796323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial drivers of DMSO reduction and DMS-dependent methanogenesis in saltmarsh sediments.
    Tebbe DA; Gruender C; Dlugosch L; Lõhmus K; Rolfes S; Könneke M; Chen Y; Engelen B; Schäfer H
    ISME J; 2023 Dec; 17(12):2340-2351. PubMed ID: 37880542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters.
    Howard EC; Sun S; Biers EJ; Moran MA
    Environ Microbiol; 2008 Sep; 10(9):2397-410. PubMed ID: 18510552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial taxa that limit sulfur flux from the ocean.
    Howard EC; Henriksen JR; Buchan A; Reisch CR; Bürgmann H; Welsh R; Ye W; González JM; Mace K; Joye SB; Kiene RP; Whitman WB; Moran MA
    Science; 2006 Oct; 314(5799):649-52. PubMed ID: 17068264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade.
    Lidbury I; Kimberley G; Scanlan DJ; Murrell JC; Chen Y
    Environ Microbiol; 2015 Dec; 17(12):5048-62. PubMed ID: 26058574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle.
    Boden R; Kelly DP; Murrell JC; Schäfer H
    Environ Microbiol; 2010 Oct; 12(10):2688-99. PubMed ID: 20482741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide.
    Schäfer H
    Appl Environ Microbiol; 2007 Apr; 73(8):2580-91. PubMed ID: 17322322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental biology of the marine Roseobacter lineage.
    Wagner-Döbler I; Biebl H
    Annu Rev Microbiol; 2006; 60():255-80. PubMed ID: 16719716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling of dimethylsulfide oxidation to biomass production by a marine flavobacterium.
    Green DH; Shenoy DM; Hart MC; Hatton AD
    Appl Environ Microbiol; 2011 May; 77(9):3137-40. PubMed ID: 21378049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 100 Days of marine Synechococcus-Ruegeria pomeroyi interaction: A detailed analysis of the exoproteome.
    Kaur A; Hernandez-Fernaud JR; Aguilo-Ferretjans MDM; Wellington EM; Christie-Oleza JA
    Environ Microbiol; 2018 Feb; 20(2):785-799. PubMed ID: 29194907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1.
    Lundgren BR; Sarwar Z; Feldman KS; Shoytush JM; Nomura CT
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30478084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfoquinovose is a widespread organosulfur substrate for Roseobacter clade bacteria in the ocean.
    Liu L; Chen X; Ye J; Ma X; Han Y; He Y; Tang K
    ISME J; 2023 Mar; 17(3):393-405. PubMed ID: 36593260
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical differentiation of three DMSP lyases from the marine Roseobacter group.
    Burkhardt I; Lauterbach L; Brock NL; Dickschat JS
    Org Biomol Chem; 2017 May; 15(20):4432-4439. PubMed ID: 28485454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean.
    Choi DH; Park KT; An SM; Lee K; Cho JC; Lee JH; Kim D; Jeon D; Noh JH
    PLoS One; 2015; 10(1):e0116271. PubMed ID: 25615446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
    Li CY; Chen XL; Zhang D; Wang P; Sheng Q; Peng M; Xie BB; Qin QL; Li PY; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Xun LY; Chen Y; Zhang YZ
    Mol Microbiol; 2017 Mar; 103(6):992-1003. PubMed ID: 27997715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.