BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 27114238)

  • 1. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
    Melo CI; Szczepańska A; Bogel-Łukasik E; Nunes da Ponte M; Branco LC
    ChemSusChem; 2016 May; 9(10):1081-4. PubMed ID: 27114238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids.
    Salas G; Campbell PS; Santini CC; Philippot K; Costa Gomes MF; Pádua AA
    Dalton Trans; 2012 Dec; 41(45):13919-26. PubMed ID: 23023650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of CO2 to formic acid promoted by a diamine-functionalized ionic liquid.
    Zhang Z; Hu S; Song J; Li W; Yang G; Han B
    ChemSusChem; 2009; 2(3):234-8. PubMed ID: 19266516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO
    Roldán L; Marco Y; García-Bordejé E
    ChemSusChem; 2017 Mar; 10(6):1139-1144. PubMed ID: 27921378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 as a regulator for the controllable preparation of highly dispersed chitosan-supported Pd catalysts in ionic liquids.
    Xue Z; Sun X; Li Z; Mu T
    Chem Commun (Camb); 2015 Jul; 51(54):10811-4. PubMed ID: 25985823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles.
    Lee JH; Hong J; Kim JH; Kang YS; Kang SW
    Chem Commun (Camb); 2012 May; 48(43):5298-300. PubMed ID: 22473474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Dioxide Transformation in Imidazolium Salts: Hydroaminomethylation Catalyzed by Ru-Complexes.
    Ali M; Gual A; Ebeling G; Dupont J
    ChemSusChem; 2016 Aug; 9(16):2129-34. PubMed ID: 27390123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation.
    Tomé LC; Patinha DJ; Ferreira R; Garcia H; Silva Pereira C; Freire CS; Rebelo LP; Marrucho IM
    ChemSusChem; 2014 Jan; 7(1):110-3. PubMed ID: 24458737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.
    Wesselbaum S; Hintermair U; Leitner W
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8585-8. PubMed ID: 22807319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored ruthenium-N-heterocyclic carbene hybrid catalytic materials for the hydrogenation of carbon dioxide in the presence of amine.
    Baffert M; Maishal TK; Mathey L; Copéret C; Thieuleux C
    ChemSusChem; 2011 Dec; 4(12):1762-5. PubMed ID: 22105901
    [No Abstract]   [Full Text] [Related]  

  • 11. Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes.
    Prechtl MH; Campbell PS; Scholten JD; Fraser GB; Machado G; Santini CC; Dupont J; Chauvin Y
    Nanoscale; 2010 Dec; 2(12):2601-6. PubMed ID: 20936213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy for Extending the Stability of Bio-oil-Derived Phenolic Oligomers by Mild Hydrotreatment with Ionic-Liquid-Stabilized Nanoparticles.
    Kim KH; Brown RC; Daugaard T; Tivol WF; Auer M; Simmons B; Singh S
    ChemSusChem; 2017 Mar; 10(5):884-893. PubMed ID: 27992678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni Nanoparticles Supported on Cage-Type Mesoporous Silica for CO2 Hydrogenation with High CH4 Selectivity.
    Budi CS; Wu HC; Chen CS; Saikia D; Kao HM
    ChemSusChem; 2016 Sep; 9(17):2326-31. PubMed ID: 27531065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the solubility of carbon dioxide in imidazolium-based ionic liquids with the PC-SAFT equation of state.
    Chen Y; Mutelet F; Jaubert JN
    J Phys Chem B; 2012 Dec; 116(49):14375-88. PubMed ID: 23127249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant.
    Zhao T; Hu X; Wu D; Li R; Yang G; Wu Y
    ChemSusChem; 2017 May; 10(9):2046-2052. PubMed ID: 28244650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights on the solubility of CO2 in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide from the microscopic point of view.
    Lourenço TC; Coelho MF; Ramalho TC; van der Spoel D; Costa LT
    Environ Sci Technol; 2013 Jul; 47(13):7421-9. PubMed ID: 23718214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide.
    Barber PS; Griggs CS; Gurau G; Liu Z; Li S; Li Z; Lu X; Zhang S; Rogers RD
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12350-3. PubMed ID: 24115399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic solvent nanofiltration in asymmetric hydrogenation: enhancement of enantioselectivity and catalyst stability by ionic liquids.
    Wong HT; See-Toh YH; Ferreira FC; Crook R; Livingston AG
    Chem Commun (Camb); 2006 May; (19):2063-5. PubMed ID: 16767276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture.
    Privalova EI; Karjalainen E; Nurmi M; Mäki-Arvela P; Eränen K; Tenhu H; Murzin DY; Mikkola JP
    ChemSusChem; 2013 Aug; 6(8):1500-9. PubMed ID: 23881741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes.
    Watkins JD; Bocarsly AB
    ChemSusChem; 2014 Jan; 7(1):284-90. PubMed ID: 24203913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.