These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27114269)

  • 1. Applying Mechanochemistry for Bottom-Up Synthesis and Host-Guest Surface Modification of Semiconducting Nanocrystals: A Case of Water-Soluble β-Cyclodextrin-Coated Zinc Oxide.
    Krupiński P; Kornowicz A; Sokołowski K; Cieślak AM; Lewiński J
    Chemistry; 2016 Jun; 22(23):7817-23. PubMed ID: 27114269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media.
    Rakshit S; Vasudevan S
    ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis.
    Abdolmaleki A; Mallakpour S; Borandeh S
    Carbohydr Polym; 2014 Mar; 103():32-7. PubMed ID: 24528697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications.
    Tang X; Choo ES; Li L; Ding J; Xue J
    Langmuir; 2009 May; 25(9):5271-5. PubMed ID: 19397360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature.
    Bauermann LP; Bill J; Aldinger F
    J Phys Chem B; 2006 Mar; 110(11):5182-5. PubMed ID: 16539445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable synthesis of ZnO nanoparticles with high intensity visible photoemission and investigation of its mechanism.
    Lv Y; Xiao W; Li W; Xue J; Ding J
    Nanotechnology; 2013 May; 24(17):175702. PubMed ID: 23571655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host-guest supramolecular assembly directing beta-cyclodextrin based nanocrystals towards their robust performances.
    Du XY; Ma K; Cheng R; She XJ; Zhang YW; Wang CF; Chen S; Xu C
    J Hazard Mater; 2019 Jan; 361():329-337. PubMed ID: 30245255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications.
    Yuvakkumar R; Suresh J; Nathanael AJ; Sundrarajan M; Hong SI
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():17-27. PubMed ID: 24907732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-soluble semiconductor nanocrystals cap exchanged with metalated ligands.
    Liu D; Snee PT
    ACS Nano; 2011 Jan; 5(1):546-50. PubMed ID: 21141814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Access to Versatile β-Cyclodextrin Scaffolds through Guest-Mediated Monoacylation.
    Vurgun N; Gómez-Biagi RF; Nitz M
    Chemistry; 2016 Jan; 22(3):1062-9. PubMed ID: 26636269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transfer of CdS nanocrystals mediated by heptamine β-cyclodextrin.
    Depalo N; Comparelli R; Huskens J; Ludden MJ; Perl A; Agostiano A; Striccoli M; Curri ML
    Langmuir; 2012 Jun; 28(23):8711-20. PubMed ID: 22594772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green β-cyclodextrin-based corrosion inhibitors: Recent developments, innovations and future opportunities.
    Berdimurodov E; Eliboyev I; Berdimuradov K; Kholikov A; Akbarov K; Dagdag O; Rbaa M; El Ibrahimi B; Verma DK; Haldhar R; Arrousse N
    Carbohydr Polym; 2022 Sep; 292():119719. PubMed ID: 35725191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.
    Shown I; Ujihara M; Imae T
    J Colloid Interface Sci; 2010 Dec; 352(2):232-7. PubMed ID: 20851400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc hydroxyacetate and its transformation to nanocrystalline zinc oxide.
    Moezzi A; McDonagh A; Dowd A; Cortie M
    Inorg Chem; 2013 Jan; 52(1):95-102. PubMed ID: 23249099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promising applications in drug delivery systems of a novel β-cyclodextrin derivative obtained by green synthesis.
    García A; Leonardi D; Lamas MC
    Bioorg Med Chem Lett; 2016 Jan; 26(2):602-608. PubMed ID: 26642766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/Cd(x)Zn(1 - x)S/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen.
    Shen H; Yuan H; Niu JZ; Xu S; Zhou C; Ma L; Li LS
    Nanotechnology; 2011 Sep; 22(37):375602. PubMed ID: 21852741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled nanofibers from leucine derived amphiphiles as nanoreactors for growth of ZnO nanoparticles.
    Johnson KT; Gribb TE; Smoak EM; Banerjee IA
    Chem Commun (Camb); 2010 Mar; 46(10):1757-9. PubMed ID: 20177640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.
    Milani N; Hettiarachchi GM; Kirby JK; Beak DG; Stacey SP; McLaughlin MJ
    PLoS One; 2015; 10(5):e0126275. PubMed ID: 25965385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications.
    Sabir S; Arshad M; Chaudhari SK
    ScientificWorldJournal; 2014; 2014():925494. PubMed ID: 25436235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals.
    Dong A; Ye X; Chen J; Kang Y; Gordon T; Kikkawa JM; Murray CB
    J Am Chem Soc; 2011 Feb; 133(4):998-1006. PubMed ID: 21175183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.