These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 27114449)
1. A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics. Wang X; Yuan ZF; Fan J; Karch KR; Ball LE; Denu JM; Garcia BA Mol Cell Proteomics; 2016 Jul; 15(7):2462-75. PubMed ID: 27114449 [TBL] [Abstract][Full Text] [Related]
2. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification. Shen B; Zhang W; Shi Z; Tian F; Deng Y; Sun C; Wang G; Qin W; Qian X Talanta; 2017 Jul; 169():195-202. PubMed ID: 28411811 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. Qin K; Zhu Y; Qin W; Gao J; Shao X; Wang YL; Zhou W; Wang C; Chen X ACS Chem Biol; 2018 Aug; 13(8):1983-1989. PubMed ID: 30059200 [TBL] [Abstract][Full Text] [Related]
4. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Deracinois B; Camoin L; Lambert M; Boyer JB; Dupont E; Bastide B; Cieniewski-Bernard C J Proteomics; 2018 Aug; 186():83-97. PubMed ID: 30016717 [TBL] [Abstract][Full Text] [Related]
5. Deciphering the Functions of O-GlcNAc Glycosylation in the Brain: The Role of Site-Specific Quantitative O-GlcNAcomics. Thompson JW; Sorum AW; Hsieh-Wilson LC Biochemistry; 2018 Jul; 57(27):4010-4018. PubMed ID: 29936833 [TBL] [Abstract][Full Text] [Related]
6. Quantitative time-resolved chemoproteomics reveals that stable Qin W; Lv P; Fan X; Quan B; Zhu Y; Qin K; Chen Y; Wang C; Chen X Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6749-E6758. PubMed ID: 28760965 [No Abstract] [Full Text] [Related]
7. Direct Monitoring of Protein O-GlcNAcylation by High-Resolution Native Mass Spectrometry. Leney AC; Rafie K; van Aalten DMF; Heck AJR ACS Chem Biol; 2017 Aug; 12(8):2078-2084. PubMed ID: 28609614 [TBL] [Abstract][Full Text] [Related]
8. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease. Wang S; Yang F; Petyuk VA; Shukla AK; Monroe ME; Gritsenko MA; Rodland KD; Smith RD; Qian WJ; Gong CX; Liu T J Pathol; 2017 Sep; 243(1):78-88. PubMed ID: 28657654 [TBL] [Abstract][Full Text] [Related]
9. An Isotope-Coded Photocleavable Probe for Quantitative Profiling of Protein O-GlcNAcylation. Li J; Li Z; Duan X; Qin K; Dang L; Sun S; Cai L; Hsieh-Wilson LC; Wu L; Yi W ACS Chem Biol; 2019 Jan; 14(1):4-10. PubMed ID: 30620550 [TBL] [Abstract][Full Text] [Related]
10. [Precise identification of Guo Z; Li H; Qin W Se Pu; 2021 Nov; 39(11):1182-1190. PubMed ID: 34677013 [TBL] [Abstract][Full Text] [Related]
11. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. Viner RI; Zhang T; Second T; Zabrouskov V J Proteomics; 2009 Jul; 72(5):874-85. PubMed ID: 19245863 [TBL] [Abstract][Full Text] [Related]
12. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Wang Z; Pandey A; Hart GW Mol Cell Proteomics; 2007 Aug; 6(8):1365-79. PubMed ID: 17507370 [TBL] [Abstract][Full Text] [Related]
13. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. Lee A; Miller D; Henry R; Paruchuri VD; O'Meally RN; Boronina T; Cole RN; Zachara NE J Proteome Res; 2016 Dec; 15(12):4318-4336. PubMed ID: 27669760 [TBL] [Abstract][Full Text] [Related]
14. Mass Spectrometry-Based Chemical and Enzymatic Methods for Global Analysis of Protein Glycosylation. Xiao H; Suttapitugsakul S; Sun F; Wu R Acc Chem Res; 2018 Aug; 51(8):1796-1806. PubMed ID: 30011186 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol. Vosseller K; Hansen KC; Chalkley RJ; Trinidad JC; Wells L; Hart GW; Burlingame AL Proteomics; 2005 Feb; 5(2):388-98. PubMed ID: 15648052 [TBL] [Abstract][Full Text] [Related]
16. Quantitative and Site-Specific Chemoproteomic Profiling of Protein O-GlcNAcylation in the Cell Cycle. Liu J; Hao Y; He Y; Li X; Sun DE; Zhang Y; Yang PY; Chen X ACS Chem Biol; 2021 Oct; 16(10):1917-1923. PubMed ID: 34161081 [TBL] [Abstract][Full Text] [Related]
17. [Comparison of the performance of secretome analysis based on metabolic labeling by three unnatural sugars]. Mao Y; Zheng J; Feng S; Tian R Se Pu; 2021 Oct; 39(10):1086-1093. PubMed ID: 34505430 [TBL] [Abstract][Full Text] [Related]
18. A chemical method for genome- and proteome-wide enrichment and O-GlcNAcylation profiling of chromatin-associated proteins. Huo B; Liu Y; Li L; Qin W Talanta; 2022 May; 241():123167. PubMed ID: 35091346 [TBL] [Abstract][Full Text] [Related]
19. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. Hahne H; Sobotzki N; Nyberg T; Helm D; Borodkin VS; van Aalten DM; Agnew B; Kuster B J Proteome Res; 2013 Feb; 12(2):927-36. PubMed ID: 23301498 [TBL] [Abstract][Full Text] [Related]
20. Identification of O-linked N-acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Nagel AK; Schilling M; Comte-Walters S; Berkaw MN; Ball LE Mol Cell Proteomics; 2013 Apr; 12(4):945-55. PubMed ID: 23443134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]