These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27114519)

  • 1. Luminidependens (LD) is an Arabidopsis protein with prion behavior.
    Chakrabortee S; Kayatekin C; Newby GA; Mendillo ML; Lancaster A; Lindquist S
    Proc Natl Acad Sci U S A; 2016 May; 113(21):6065-70. PubMed ID: 27114519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase separation of a yeast prion protein promotes cellular fitness.
    Franzmann TM; Jahnel M; Pozniakovsky A; Mahamid J; Holehouse AS; Nüske E; Richter D; Baumeister W; Grill SW; Pappu RV; Hyman AA; Alberti S
    Science; 2018 Jan; 359(6371):. PubMed ID: 29301985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis.
    Jung JH; Barbosa AD; Hutin S; Kumita JR; Gao M; Derwort D; Silva CS; Lai X; Pierre E; Geng F; Kim SB; Baek S; Zubieta C; Jaeger KE; Wigge PA
    Nature; 2020 Sep; 585(7824):256-260. PubMed ID: 32848244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins.
    Tanaka M; Chien P; Yonekura K; Weissman JS
    Cell; 2005 Apr; 121(1):49-62. PubMed ID: 15820678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation.
    Malinovska L; Palm S; Gibson K; Verbavatz JM; Alberti S
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2620-9. PubMed ID: 25941378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation preserved in a weak-to-strong or strong-to-weak [PSI+] conversion during transmission to Sup35 prion variants.
    Crist CG; Kurahashi H; Nakayashiki T; Nakamura Y
    Biochimie; 2006 May; 88(5):485-96. PubMed ID: 16364534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+].
    Liu JJ; Sondheimer N; Lindquist SL
    Proc Natl Acad Sci U S A; 2002 Dec; 99 Suppl 4(Suppl 4):16446-53. PubMed ID: 12461168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast.
    Ganusova EE; Ozolins LN; Bhagat S; Newnam GP; Wegrzyn RD; Sherman MY; Chernoff YO
    Mol Cell Biol; 2006 Jan; 26(2):617-29. PubMed ID: 16382152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid oligomers: diffuse oligomer-based transmission of yeast prions.
    Taguchi H; Kawai-Noma S
    FEBS J; 2010 Mar; 277(6):1359-68. PubMed ID: 20148963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.
    Shkundina IS; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    Genetics; 2006 Feb; 172(2):827-35. PubMed ID: 16272413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [New aspects of research upon the yeast Saccharomyces cerevisiae [PSI+] prion].
    Ishikawa T
    Postepy Biochem; 2007; 53(2):182-7. PubMed ID: 17969880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion protein remodelling confers an immediate phenotypic switch.
    Satpute-Krishnan P; Serio TR
    Nature; 2005 Sep; 437(7056):262-5. PubMed ID: 16148935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prion domains as a driving force for the assembly of functional nanomaterials.
    Wang W; Ventura S
    Prion; 2020 Dec; 14(1):170-179. PubMed ID: 32597308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.