These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27114519)

  • 21. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures.
    Mukhopadhyay S; Krishnan R; Lemke EA; Lindquist S; Deniz AA
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2649-54. PubMed ID: 17299036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prion protein remodelling confers an immediate phenotypic switch.
    Satpute-Krishnan P; Serio TR
    Nature; 2005 Sep; 437(7056):262-5. PubMed ID: 16148935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strains of [PSI(+)] are distinguished by their efficiencies of prion-mediated conformational conversion.
    Uptain SM; Sawicki GJ; Caughey B; Lindquist S
    EMBO J; 2001 Nov; 20(22):6236-45. PubMed ID: 11707395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational diversity in a yeast prion dictates its seeding specificity.
    Chien P; Weissman JS
    Nature; 2001 Mar; 410(6825):223-7. PubMed ID: 11242084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blessings in disguise: biological benefits of prion-like mechanisms.
    Newby GA; Lindquist S
    Trends Cell Biol; 2013 Jun; 23(6):251-9. PubMed ID: 23485338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prion species barrier between the closely related yeast proteins is detected despite coaggregation.
    Chen B; Newnam GP; Chernoff YO
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2791-6. PubMed ID: 17296932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Yeast prions, mammalian amyloidoses, and the problem of proteomic networks].
    Galkin AP; Mironova LN; Zhuravleva GA; Inge-Vechtomov SG
    Genetika; 2006 Nov; 42(11):1558-70. PubMed ID: 17163073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.
    Andrey SB; Chan ML; Power WP
    J Phys Chem A; 2010 Mar; 114(10):3457-65. PubMed ID: 20155963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scrambled prion domains form prions and amyloid.
    Ross ED; Baxa U; Wickner RB
    Mol Cell Biol; 2004 Aug; 24(16):7206-13. PubMed ID: 15282319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.
    Du Z; Valtierra S; Li L
    Prion; 2014; 8(6):387-92. PubMed ID: 25517561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prion-like proteins and their computational identification in proteomes.
    Batlle C; Iglesias V; Navarro S; Ventura S
    Expert Rev Proteomics; 2017 Apr; 14(4):335-350. PubMed ID: 28271922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers.
    Narayanan S; Walter S; Reif B
    Chembiochem; 2006 May; 7(5):757-65. PubMed ID: 16570324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins.
    Zhang Y; Man VH; Roland C; Sagui C
    ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells.
    Krammer C; Suhre MH; Kremmer E; Diemer C; Hess S; Schätzl HM; Scheibel T; Vorberg I
    FASEB J; 2008 Mar; 22(3):762-73. PubMed ID: 17928365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prion-like proteins: from computational approaches to proteome-wide analysis.
    Gil-Garcia M; Iglesias V; Pallarès I; Ventura S
    FEBS Open Bio; 2021 Sep; 11(9):2400-2417. PubMed ID: 34057308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amyloids and prions in plants: Facts and perspectives.
    Antonets KS; Nizhnikov AA
    Prion; 2017 Sep; 11(5):300-312. PubMed ID: 28960135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolutionary scope and neurological disease linkage of yeast-prion-like proteins in humans.
    An L; Harrison PM
    Biol Direct; 2016 Jul; 11():32. PubMed ID: 27457357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins.
    Batlle C; de Groot NS; Iglesias V; Navarro S; Ventura S
    Sci Rep; 2017 Sep; 7(1):12134. PubMed ID: 28935930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Rho Termination Factor of Clostridium botulinum Contains a Prion-Like Domain with a Highly Amyloidogenic Core.
    Pallarès I; Iglesias V; Ventura S
    Front Microbiol; 2015; 6():1516. PubMed ID: 26779170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Early stage prion assembly involves two subpopulations with different quaternary structures and a secondary templating pathway.
    Igel-Egalon A; Laferrière F; Moudjou M; Bohl J; Mezache M; Knäpple T; Herzog L; Reine F; Jas-Duval C; Doumic M; Rezaei H; Béringue V
    Commun Biol; 2019; 2():363. PubMed ID: 31602412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.