These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27114613)

  • 21. On the relationship between anion binding and chloride conductance in the CFTR anion channel.
    Linsdell P
    Biochim Biophys Acta Biomembr; 2021 Apr; 1863(4):183558. PubMed ID: 33444622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK; Smith SS; Choi AD; Richards NW; Strong TV; Drumm ML; Collins FS; Dawson DC
    Biophys J; 1998 Mar; 74(3):1320-32. PubMed ID: 9512029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.
    Wang W; Linsdell P
    Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance.
    Linsdell P; Irving CL; Cowley EA; El Hiani Y
    Cell Mol Life Sci; 2021 Jun; 78(12):5213-5223. PubMed ID: 34023918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational change of the extracellular parts of the CFTR protein during channel gating.
    Negoda A; Cowley EA; El Hiani Y; Linsdell P
    Cell Mol Life Sci; 2018 Aug; 75(16):3027-3038. PubMed ID: 29441426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore.
    Zhou JJ; Fatehi M; Linsdell P
    Pflugers Arch; 2008 Nov; 457(2):351-60. PubMed ID: 18449561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.
    Linsdell P
    Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore.
    Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS
    Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P
    Exp Physiol; 2006 Jan; 91(1):123-9. PubMed ID: 16157656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
    Cui G; Song B; Turki HW; McCarty NA
    Pflugers Arch; 2012 Mar; 463(3):405-18. PubMed ID: 22160394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore.
    Linsdell P
    Adv Exp Med Biol; 2017; 925():13-32. PubMed ID: 27311317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
    Gupta J; Lindsell P
    Mol Membr Biol; 2003; 20(1):45-52. PubMed ID: 12745925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P; Evagelidis A; Hanrahan JW
    Biophys J; 2000 Jun; 78(6):2973-82. PubMed ID: 10827976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating.
    Wang W; Linsdell P
    J Biol Chem; 2012 Sep; 287(38):32136-46. PubMed ID: 22843683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.