BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 27115041)

  • 1. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    ACS Synth Biol; 2016 Jul; 5(7):721-32. PubMed ID: 27115041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Genome Editing with CRISPR-Cas9: Taking Clostridium beijerinckii as an Example.
    Zhang ZT; Jiménez-Bonilla P; Seo SO; Lu T; Jin YS; Blaschek HP; Wang Y
    Methods Mol Biol; 2018; 1772():297-325. PubMed ID: 29754236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii.
    Li Q; Chen J; Minton NP; Zhang Y; Wen Z; Liu J; Yang H; Zeng Z; Ren X; Yang J; Gu Y; Jiang W; Jiang Y; Yang S
    Biotechnol J; 2016 Jul; 11(7):961-72. PubMed ID: 27213844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system.
    Wang Y; Zhang ZT; Seo SO; Choi K; Lu T; Jin YS; Blaschek HP
    J Biotechnol; 2015 Apr; 200():1-5. PubMed ID: 25680931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markerless genome editing in Clostridium beijerinckii using the CRISPR-Cpf1 system.
    Zhang J; Hong W; Zong W; Wang P; Wang Y
    J Biotechnol; 2018 Oct; 284():27-30. PubMed ID: 30081040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii.
    Diallo M; Hocq R; Collas F; Chartier G; Wasels F; Wijaya HS; Werten MWT; Wolbert EJH; Kengen SWM; van der Oost J; Ferreira NL; López-Contreras AM
    Methods; 2020 Feb; 172():51-60. PubMed ID: 31362039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.