BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27116385)

  • 1. Shells of charge: a density functional theory for charged hard spheres.
    Roth R; Gillespie D
    J Phys Condens Matter; 2016 Jun; 28(24):244006. PubMed ID: 27116385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Charged Shell Model: A Density Functional Theory for Electrolytes.
    Jiang J; Gillespie D
    J Chem Theory Comput; 2021 Apr; 17(4):2409-2416. PubMed ID: 33783216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The weighted correlation approach for density functional theory: a study on the structure of the electric double layer.
    Wang Z; Liu L; Neretnieks I
    J Phys Condens Matter; 2011 May; 23(17):175002. PubMed ID: 21483081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fundamental measure theory for the sticky hard sphere fluid.
    Hansen-Goos H; Wettlaufer JS
    J Chem Phys; 2011 Jan; 134(1):014506. PubMed ID: 21219006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory.
    Yu YX; Jin L
    J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study.
    Modak B; Patra CN; Ghosh SK; Das P
    J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Lagrangian theorem-based density-functional approximation free of adjustable parameters to nonhard-sphere fluid.
    Zhou S
    J Chem Phys; 2004 Jul; 121(2):895-901. PubMed ID: 15260621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real Electrolyte Solutions in the Functionalized Mean Spherical Approximation: A Density Functional Theory for Simple Electrolyte Solutions.
    Soares EDA; Vernin NS; Santos MS; Tavares FW
    J Phys Chem B; 2022 Aug; 126(32):6095-6101. PubMed ID: 35939821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the accuracy of three classical density functional theories of the electrical double layer.
    Voukadinova A; Valiskó M; Gillespie D
    Phys Rev E; 2018 Jul; 98(1-1):012116. PubMed ID: 30110825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-order mean spherical approximation for inhomogeneous fluids.
    Tang Y
    J Chem Phys; 2004 Dec; 121(21):10605-10. PubMed ID: 15549943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach.
    Medasani B; Ovanesyan Z; Thomas DG; Sushko ML; Marucho M
    J Chem Phys; 2014 May; 140(20):204510. PubMed ID: 24880304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
    Buyukdagli S; Achim CV; Ala-Nissila T
    J Chem Phys; 2012 Sep; 137(10):104902. PubMed ID: 22979885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures.
    Li Z; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031109. PubMed ID: 15524508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.