These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27116703)

  • 1. State dependency of inhibitory control performance: an electrical neuroimaging study.
    De Pretto M; Sallard E; Spierer L
    Eur J Neurosci; 2016 Jul; 44(2):1826-32. PubMed ID: 27116703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous pre-stimulus fluctuations in the activity of right fronto-parietal areas influence inhibitory control performance.
    Chavan CF; Manuel AL; Mouthon M; Spierer L
    Front Hum Neurosci; 2013; 7():238. PubMed ID: 23761747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early attentional processes distinguish selective from global motor inhibitory control: an electrical neuroimaging study.
    Sallard E; Barral J; Chavan CF; Spierer L
    Neuroimage; 2014 Feb; 87():183-9. PubMed ID: 24220039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing frontal top-down inhibitory control with Go/NoGo training.
    Hartmann L; Sallard E; Spierer L
    Brain Struct Funct; 2016 Sep; 221(7):3835-42. PubMed ID: 26459141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus Reward Value Interacts with Training-induced Plasticity in Inhibitory Control.
    De Pretto M; Hartmann L; Garcia-Burgos D; Sallard E; Spierer L
    Neuroscience; 2019 Nov; 421():82-94. PubMed ID: 31705887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological correlates for response inhibition in a Go/NoGo task.
    Bokura H; Yamaguchi S; Kobayashi S
    Clin Neurophysiol; 2001 Dec; 112(12):2224-32. PubMed ID: 11738192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain dynamics underlying training-induced improvement in suppressing inappropriate action.
    Manuel AL; Grivel J; Bernasconi F; Murray MM; Spierer L
    J Neurosci; 2010 Oct; 30(41):13670-8. PubMed ID: 20943907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal brain dynamics supporting the immediate automatization of inhibitory control by implementation intentions.
    De Pretto M; Rochat L; Spierer L
    Sci Rep; 2017 Sep; 7(1):10821. PubMed ID: 28883497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal brain dynamics mediating post-error behavioral adjustments.
    Manuel AL; Bernasconi F; Murray MM; Spierer L
    J Cogn Neurosci; 2012 Jun; 24(6):1331-43. PubMed ID: 21981672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute alcohol intoxication and expectations reshape the spatiotemporal functional architecture of executive control.
    Ribordy Lambert F; Wicht CA; Mouthon M; Spierer L
    Neuroimage; 2020 Jul; 215():116811. PubMed ID: 32276071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test.
    Fernandez M; Tartar JL; Padron D; Acosta J
    Brain Cogn; 2013 Dec; 83(3):330-6. PubMed ID: 24141240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Errors can be related to pre-stimulus differences in ERP topography and their concomitant sources.
    Britz J; Michel CM
    Neuroimage; 2010 Feb; 49(3):2774-82. PubMed ID: 19850140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carry-over task rule in task switching: an ERP investigation using a Go/Nogo paradigm.
    Umebayashi K; Okita T
    Biol Psychol; 2013 Feb; 92(2):295-300. PubMed ID: 23182873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: Neurocognitive deficits in execution, inhibition, and attention processing.
    Pandey AK; Kamarajan C; Manz N; Chorlian DB; Stimus A; Porjesz B
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Feb; 65():158-71. PubMed ID: 26456730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced frontal activity during response inhibition in individuals with psychopathic traits: an sLORETA study.
    Kim YY; Jung YS
    Biol Psychol; 2014 Mar; 97():49-59. PubMed ID: 24553134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-related potentials for response inhibition in Parkinson's disease.
    Bokura H; Yamaguchi S; Kobayashi S
    Neuropsychologia; 2005; 43(6):967-75. PubMed ID: 15716167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastic modifications within inhibitory control networks induced by practicing a stop-signal task: an electrical neuroimaging study.
    Manuel AL; Bernasconi F; Spierer L
    Cortex; 2013 Apr; 49(4):1141-7. PubMed ID: 23313010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source localization of the Nogo-N2: a developmental study.
    Jonkman LM; Sniedt FL; Kemner C
    Clin Neurophysiol; 2007 May; 118(5):1069-77. PubMed ID: 17368096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection.
    Perri RL; Berchicci M; Lucci G; Spinelli D; Di Russo F
    Neuroimage; 2015 Jun; 113():320-8. PubMed ID: 25812715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual differences discriminate event-related potentials but not performance during response inhibition.
    Roche RA; Garavan H; Foxe JJ; O'Mara SM
    Exp Brain Res; 2005 Jan; 160(1):60-70. PubMed ID: 15480606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.