These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27116747)

  • 1. Ion Channel Based Bio-Synthetic Modulator for Diffusive Molecular Communication.
    Arjmandi H; Ahmadzadeh A; Schober R; Nasiri Kenari M
    IEEE Trans Nanobioscience; 2016 Jul; 15(5):418-432. PubMed ID: 27116747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusive Molecular Communication in Biological Cylindrical Environment.
    Zoofaghari M; Arjmandi H
    IEEE Trans Nanobioscience; 2019 Jan; 18(1):74-83. PubMed ID: 30530368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ISI-mitigating modulation scheme using ion reaction for molecular communications.
    Jing D; Li Y; Hang R; Wu Z; Zhang H
    IET Nanobiotechnol; 2019 Sep; 13(7):674-681. PubMed ID: 31573535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratio Shift Keying Modulation for Time-Varying Molecular Communication Channels.
    Araz MO; Emirdagi AR; Kopuzlu MS; Kuscu M
    IEEE Trans Nanobioscience; 2024 Jan; 23(1):176-189. PubMed ID: 37490368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Time-Based Modulation Scheme in Time-Asynchronous Channels for Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):59-67. PubMed ID: 31675338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis of molecular relay channels: an information theoretic approach.
    Nakano T; Liu JQ
    IEEE Trans Nanobioscience; 2010 Sep; 9(3):213-21. PubMed ID: 20525537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-MoSK Modulation in Molecular Communications.
    Kabir MH; Islam SM; Kwak KS
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):680-3. PubMed ID: 26335557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Transmitted Molecules and Decision Threshold for Drift-Induced Diffusive Molecular Channel With Mobile Nanomachines.
    Chouhan L; Sharma PK; Varshney N
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):651-660. PubMed ID: 31425042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis and ISI Mitigation With Imperfect Transmitter in Molecular Communication.
    Jing D; Lin L; Eckford AW
    IEEE Trans Nanobioscience; 2024 Jul; 23(3):428-438. PubMed ID: 38466591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel-facilitated diffusion boosted by particle binding at the channel entrance.
    Pagliara S; Dettmer SL; Keyser UF
    Phys Rev Lett; 2014 Jul; 113(4):048102. PubMed ID: 25105657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Secrecy Performance in D-MoSK-Based 3-D Diffusive Molecular Communication System.
    Jia Z; Ma L; Shen S; Jiang X
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):272-282. PubMed ID: 37792645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Optical-to-Chemical Signal Conversion Interface: A Small-Scale Modulator for Molecular Communications.
    Grebenstein L; Kirchner J; Peixoto RS; Zimmermann W; Irnstorfer F; Wicke W; Ahmadzadeh A; Jamali V; Fischer G; Weigel R; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2019 Jan; 18(1):31-42. PubMed ID: 30235144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):469-481. PubMed ID: 31071051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.