BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27116945)

  • 1. Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns.
    Gong P; Es'haghian S; Wood FM; Sampson DD; McLaughlin RA
    Exp Dermatol; 2016 Sep; 25(9):722-4. PubMed ID: 27116945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OCT-Based Angiography and Surface Topography in Burn-Damaged Skin.
    Lu J; Deegan AJ; Cheng Y; Mandell SP; Wang RK
    Lasers Surg Med; 2021 Aug; 53(6):849-860. PubMed ID: 33305835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation.
    Gong P; Es'haghian S; Harms KA; Murray A; Rea S; Kennedy BF; Wood FM; Sampson DD; McLaughlin RA
    J Biophotonics; 2016 Jun; 9(6):626-36. PubMed ID: 26260918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of optical attenuation imaging using optical coherence tomography for monitoring of scars undergoing fractional laser treatment.
    Es'haghian S; Gong P; Chin L; Harms KA; Murray A; Rea S; Kennedy BF; Wood FM; Sampson DD; McLaughlin RA
    J Biophotonics; 2017 Apr; 10(4):511-522. PubMed ID: 27243584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo assessment of human burn scars through automated quantification of vascularity using optical coherence tomography.
    Liew YM; McLaughlin RA; Gong P; Wood FM; Sampson DD
    J Biomed Opt; 2013 Jun; 18(6):061213. PubMed ID: 23174911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography].
    Liu SH; Xie WG; Kremer M; Machens HG; Lankenau EM; Huettmann G
    Zhonghua Shao Shang Za Zhi; 2010 Aug; 26(4):272-5. PubMed ID: 21029684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of OCT-Derived Attenuation Coefficient in Acute Burn-Damaged Skin.
    Lu J; Deegan AJ; Cheng Y; Liu T; Zheng Y; Mandell SP; Wang RK
    Lasers Surg Med; 2021 Nov; 53(9):1192-1200. PubMed ID: 33998012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-imaging system for burn depth diagnosis.
    Ganapathy P; Tamminedi T; Qin Y; Nanney L; Cardwell N; Pollins A; Sexton K; Yadegar J
    Burns; 2014 Feb; 40(1):67-81. PubMed ID: 23790396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study.
    Waibel JS; Rudnick AC; Wulkan AJ; Holmes JD
    J Drugs Dermatol; 2016 Nov; 15(11):1375-1380. PubMed ID: 28095550
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Wang Q; Gong P; Afsharan H; Joo C; Morellini N; Fear M; Wood F; Ho H; Silva D; Cense B
    J Biomed Opt; 2023 Dec; 28(12):126001. PubMed ID: 38074217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking.
    Gong P; McLaughlin RA; Liew YM; Munro PR; Wood FM; Sampson DD
    J Biomed Opt; 2014 Feb; 19(2):21111. PubMed ID: 24192908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards quantitative assessment of burn based on photoacoustic and optical coherence tomography.
    Liu K; Chen Z; Zhou W; Xing D
    J Biophotonics; 2020 Oct; 13(10):e202000126. PubMed ID: 32609427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin?
    Greaves NS; Benatar B; Whiteside S; Alonso-Rasgado T; Baguneid M; Bayat A
    Br J Dermatol; 2014 Apr; 170(4):840-50. PubMed ID: 24329481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking of cutaneous vascular structural changes post-UV irradiation using optical coherence tomography angiography.
    Ninomiya M; Hara Y; Kubo Y; Yamashita T; Katagiri C
    Photodermatol Photoimmunol Photomed; 2020 May; 36(3):226-232. PubMed ID: 32107789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography.
    Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF
    J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of edema volume in skin upon injury in a mouse ear model with optical coherence tomography.
    Qin W; Wang RK
    Lasers Med Sci; 2016 Sep; 31(7):1351-61. PubMed ID: 27282161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.
    Zugaj D; Chenet A; Petit L; Vaglio J; Pascual T; Piketty C; Bourdes V
    Skin Res Technol; 2018 Aug; 24(3):396-406. PubMed ID: 29399881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.