These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2711752)

  • 1. RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars.
    Goffrini P; Algeri AA; Donnini C; Wesolowski-Louvel M; Ferrero I
    Yeast; 1989; 5(2):99-106. PubMed ID: 2711752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of genes LAC1 and LAC2 in the biosynthesis of lactose metabolism enzymes by Kluyveromyces lactis.
    Boze H; Nicol D; Moulin G; Galzy P
    Acta Microbiol Hung; 1987; 34(1):73-83. PubMed ID: 3115053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrachromosomal genetics in the yeast Kluyveromyces lactis. Isolation and characterization of antimycin-resistant mutants.
    Brunner A; Mendoza V; Tuena de Cobos A
    Curr Genet; 1987; 11(6-7):475-82. PubMed ID: 3450410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsaturated fatty acids-dependent linkage between respiration and fermentation revealed by deletion of hypoxic regulatory KlMGA2 gene in the facultative anaerobe-respiratory yeast Kluyveromyces lactis.
    Ottaviano D; Montanari A; De Angelis L; Santomartino R; Visca A; Brambilla L; Rinaldi T; Bello C; Reverberi M; Bianchi MM
    FEMS Yeast Res; 2015 Aug; 15(5):fov028. PubMed ID: 26019145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the effect of inhibitors of mitochondrial macromolecular-synthesizing systems and respiration on the growth of cultured chick embryo cells.
    Morais R
    J Cell Physiol; 1980 Jun; 103(3):455-66. PubMed ID: 6772651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of galactose and lactose by Kluyveromyces lactis: biochemical characteristics and attempted genetical analysis.
    Boze H; Moulin G; Galzy P
    J Gen Microbiol; 1987 Jan; 133(1):15-23. PubMed ID: 3655722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial cytochrome b genes with a six-nucleotide deletion or single-nucleotide substitutions confer resistance to antimycin A in the yeast Kluyveromyces lactis.
    Coria R; García M; Brunner A
    Mol Microbiol; 1989 Nov; 3(11):1599-604. PubMed ID: 2615656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis.
    Tarrío N; García-Leiro A; Cerdán ME; González-Siso MI
    FEMS Yeast Res; 2008 Jun; 8(4):597-606. PubMed ID: 18318708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene.
    Wésolowski-Louvel M; Goffrini P; Ferrero I; Fukuhara H
    Mol Gen Genet; 1992 May; 233(1-2):89-96. PubMed ID: 1603078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.
    Lodi T; Donnini C
    FEMS Yeast Res; 2005 May; 5(8):727-34. PubMed ID: 15851101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359.
    Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY
    Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants.
    González Siso MI; Freire Picos MA; Cerdán ME
    FEBS Lett; 1996 May; 387(1):7-10. PubMed ID: 8654569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis.
    Ferrero I; Viola AM; Goffeau A
    Antonie Van Leeuwenhoek; 1981 Mar; 47(1):11-24. PubMed ID: 7247391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source.
    Fonseca GG; de Carvalho NM; Gombert AK
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5055-67. PubMed ID: 23435899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of yeast mitochondria. IV. Antibiotic effects on growth, cytochrome synthesis, and respiration in Kluyveromyces lactis.
    Morgan AJ; Whittaker PA
    Mol Gen Genet; 1978 Aug; 164(2):185-93. PubMed ID: 703762
    [No Abstract]   [Full Text] [Related]  

  • 18. The transdehydrogenase genes KlNDE1 and KlNDI1 regulate the expression of KlGUT2 in the yeast Kluyveromyces lactis.
    Saliola M; D'Amici S; Sponziello M; Mancini P; Tassone P; Falcone C
    FEMS Yeast Res; 2010 Aug; 10(5):518-26. PubMed ID: 20491935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and molecular physiology of the yeast Kluyveromyces lactis.
    Schaffrath R; Breunig KD
    Fungal Genet Biol; 2000 Aug; 30(3):173-90. PubMed ID: 11035939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiae.
    Rubio-Texeira M; Castrillo JI; Adam AC; Ugalde UO; Polaina J
    Yeast; 1998 Jun; 14(9):827-37. PubMed ID: 9818720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.