BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27117643)

  • 1. Wild-type opsin does not aggregate with a misfolded opsin mutant.
    Gragg M; Kim TG; Howell S; Park PS
    Biochim Biophys Acta; 2016 Aug; 1858(8):1850-9. PubMed ID: 27117643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer.
    Gragg M; Park PS
    Methods Cell Biol; 2019; 149():87-105. PubMed ID: 30616829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misfolded opsin mutants display elevated β-sheet structure.
    Miller LM; Gragg M; Kim TG; Park PS
    FEBS Lett; 2015 Oct; 589(20 Pt B):3119-25. PubMed ID: 26358292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation.
    Chiang WC; Hiramatsu N; Messah C; Kroeger H; Lin JH
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7159-66. PubMed ID: 22956602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation.
    Saliba RS; Munro PM; Luthert PJ; Cheetham ME
    J Cell Sci; 2002 Jul; 115(Pt 14):2907-18. PubMed ID: 12082151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the Proteostasis Network in Rhodopsin Retinitis Pigmentosa.
    Parfitt DA; Cheetham ME
    Adv Exp Med Biol; 2016; 854():479-84. PubMed ID: 26427449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
    Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ
    J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological manipulation of rhodopsin retinitis pigmentosa.
    Mendes HF; Zaccarini R; Cheetham ME
    Adv Exp Med Biol; 2010; 664():317-23. PubMed ID: 20238031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis.
    Stojanovic A; Hwang I; Khorana HG; Hwa J
    J Biol Chem; 2003 Oct; 278(40):39020-8. PubMed ID: 12871954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration.
    Athanasiou D; Aguila M; Opefi CA; South K; Bellingham J; Bevilacqua D; Munro PM; Kanuga N; Mackenzie FE; Dubis AM; Georgiadis A; Graca AB; Pearson RA; Ali RR; Sakami S; Palczewski K; Sherman MY; Reeves PJ; Cheetham ME
    Hum Mol Genet; 2017 Jan; 26(2):305-319. PubMed ID: 28065882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic compensation restores trafficking of the autosomal recessive retinitis pigmentosa E150K opsin mutant to the plasma membrane.
    Pulagam LP; Palczewski K
    J Biol Chem; 2010 Sep; 285(38):29446-56. PubMed ID: 20628051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
    Colley NJ; Cassill JA; Baker EK; Zuker CS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3070-4. PubMed ID: 7708777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation.
    Ortega JT; Parmar T; Jastrzebska B
    J Biol Chem; 2019 May; 294(20):8101-8122. PubMed ID: 30944172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
    Noorwez SM; Sama RR; Kaushal S
    J Biol Chem; 2009 Nov; 284(48):33333-42. PubMed ID: 19801547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a cellular model of rod opsin retinitis pigmentosa.
    Adamowicz M; Song A; Wadsworth S; Scaria A; O'Riordan C
    Adv Exp Med Biol; 2012; 723():573-9. PubMed ID: 22183380
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.