These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27117678)

  • 1. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.
    Sun Q; Chen W
    Chem Commun (Camb); 2016 May; 52(40):6701-4. PubMed ID: 27117678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis.
    Sun Q; Madan B; Tsai SL; DeLisa MP; Chen W
    Chem Commun (Camb); 2014 Feb; 50(12):1423-5. PubMed ID: 24350330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes.
    Chen L; Ge X
    Appl Biochem Biotechnol; 2018 Dec; 186(4):937-948. PubMed ID: 29797297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N
    Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.
    Chen C; Cui Z; Song X; Liu YJ; Cui Q; Feng Y
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2203-12. PubMed ID: 26521249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases.
    Lu L; Zhang L; Yuan L; Zhu T; Chen W; Wang G; Wang Q
    Chembiochem; 2019 Jun; 20(11):1394-1399. PubMed ID: 30697892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA.
    Deng L; Mori Y; Sermsathanaswadi J; Apiwatanapiwat W; Kosugi A
    J Biotechnol; 2015 Oct; 212():144-52. PubMed ID: 26302838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome.
    Mori Y; Ozasa S; Kitaoka M; Noda S; Tanaka T; Ichinose H; Kamiya N
    Chem Commun (Camb); 2013 Aug; 49(62):6971-3. PubMed ID: 23764949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving biomass breakdown through engineered cellulosomes.
    Gilmore SP; Henske JK; O'Malley MA
    Bioengineered; 2015; 6(4):204-8. PubMed ID: 26068180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
    Tsai SL; DaSilva NA; Chen W
    ACS Synth Biol; 2013 Jan; 2(1):14-21. PubMed ID: 23656322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization.
    Wang Y; Leng L; Islam MK; Liu F; Lin CSK; Leu SY
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31288425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex.
    You C; Zhang XZ; Sathitsuksanoh N; Lynd LR; Zhang YH
    Appl Environ Microbiol; 2012 Mar; 78(5):1437-44. PubMed ID: 22210210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the functionality and stability of designer cellulosomes at elevated temperatures.
    Galanopoulou AP; Moraïs S; Georgoulis A; Morag E; Bayer EA; Hatzinikolaou DG
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8731-43. PubMed ID: 27207145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and H
    Chen Q; Yu S; Myung N; Chen W
    J Biotechnol; 2017 Dec; 263():30-35. PubMed ID: 29029999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly.
    Song W; Zhang Q; Sun W
    Chem Commun (Camb); 2015 Feb; 51(12):2392-5. PubMed ID: 25564112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance technique to multienzymatic complexes.
    Zhou S; Li HF; Garlapalli R; Nokes SE; Flythe M; Rankin SE; Knutson BL
    J Biotechnol; 2017 Jan; 241():42-49. PubMed ID: 27838255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds.
    Kim DM; Umetsu M; Takai K; Matsuyama T; Ishida N; Takahashi H; Asano R; Kumagai I
    Small; 2011 Mar; 7(5):656-64. PubMed ID: 21290602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.