These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27117716)

  • 1. Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus x giganteus in agriculture.
    Chirino-Valle I; Kandula D; Littlejohn C; Hill R; Walker M; Shields M; Cummings N; Hettiarachchi D; Wratten S
    Sci Rep; 2016 Apr; 6():25109. PubMed ID: 27117716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of multiple ecosystem services in pasture by shelter created from the hybrid sterile bioenergy grass Miscanthus x giganteus.
    Littlejohn CP; Hofmann RW; Wratten SD
    Sci Rep; 2019 Apr; 9(1):5575. PubMed ID: 30944349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.
    Nsanganwimana F; Pourrut B; Mench M; Douay F
    J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations.
    Rusinowski S; Krzyżak J; Clifton-Brown J; Jensen E; Mos M; Webster R; Sitko K; Pogrzeba M
    Environ Pollut; 2019 Sep; 252(Pt B):1377-1387. PubMed ID: 31254895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.
    Spencer JL; Raghu S
    PLoS One; 2009 Dec; 4(12):e8336. PubMed ID: 20016814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agronomic experiences with Miscanthus x giganteus in Illinois, USA.
    Pyter R; Heaton E; Dohleman F; Voigt T; Long S
    Methods Mol Biol; 2009; 581():41-52. PubMed ID: 19768614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge.
    Voća N; Leto J; Karažija T; Bilandžija N; Peter A; Kutnjak H; Šurić J; Poljak M
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the enzymatic digestibility of physically and chemically pretreated selected line of diploid-Miscanthus sinensis Shiozuka and triploid-M.×giganteus.
    Hideno A; Kawashima A; Anzoua KG; Yamada T
    Bioresour Technol; 2013 Oct; 146():393-399. PubMed ID: 23954245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of miscanthus productivity and water use efficiency in southeastern United States.
    Maleski JJ; Bosch DD; Anderson RG; Coffin AW; Anderson WF; Strickland TC
    Sci Total Environ; 2019 Nov; 692():1125-1134. PubMed ID: 31539944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.
    Slewinski TL
    J Exp Bot; 2012 Aug; 63(13):4647-70. PubMed ID: 22732107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC; Kuan WC
    Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops.
    Grady KL; Sorensen JW; Stopnisek N; Guittar J; Shade A
    Nat Commun; 2019 Sep; 10(1):4135. PubMed ID: 31515535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.
    Nishiwaki A; Mizuguti A; Kuwabara S; Toma Y; Ishigaki G; Miyashita T; Yamada T; Matuura H; Yamaguchi S; Rayburn AL; Akashi R; Stewart JR
    Am J Bot; 2011 Jan; 98(1):154-9. PubMed ID: 21613094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moth diversity in three biofuel crops and native prairie in Illinois.
    Harrison T; Berenbaum MR
    Insect Sci; 2013 Jun; 20(3):407-19. PubMed ID: 23955892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin.
    da Costa RM; Pattathil S; Avci U; Lee SJ; Hazen SP; Winters A; Hahn MG; Bosch M
    New Phytol; 2017 Mar; 213(4):1710-1725. PubMed ID: 27859277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass?
    Dohleman FG; Heaton EA; Leakey AD; Long SP
    Plant Cell Environ; 2009 Nov; 32(11):1525-37. PubMed ID: 19558624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.
    Gabrielle B; Gagnaire N; Massad RS; Dufossé K; Bessou C
    Bioresour Technol; 2014; 152():511-8. PubMed ID: 24280674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of plant biomass production.
    Demura T; Ye ZH
    Curr Opin Plant Biol; 2010 Jun; 13(3):299-304. PubMed ID: 20381410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.