These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27117858)

  • 21. 3D Printing of Ultralight Biomimetic Hierarchical Graphene Materials with Exceptional Stiffness and Resilience.
    Peng M; Wen Z; Xie L; Cheng J; Jia Z; Shi D; Zeng H; Zhao B; Liang Z; Li T; Jiang L
    Adv Mater; 2019 Aug; 31(35):e1902930. PubMed ID: 31267581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Characterization of Polyurethane Foams Based on Biopolyols.
    De la Hoz Alford L; de Souza CGP; Paciornik S; d'Almeida JRM; Leite BS; Avila HC; Léonard F; Bruno G
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive modulus and deformation mechanisms of 3DG foams: experimental investigation and multiscale modeling.
    Mahdavi SM; Adibnazari S; Del Monte F; Gutiérrez MC
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34343983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis.
    Guillén T; Zhang QH; Tozzi G; Ohrndorf A; Christ HJ; Tong J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1452-61. PubMed ID: 21783155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions.
    Vukicevic M; Puperi DS; Jane Grande-Allen K; Little SH
    Ann Biomed Eng; 2017 Feb; 45(2):508-519. PubMed ID: 27324801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.
    Gagg G; Ghassemieh E; Wiria FE
    Proc Inst Mech Eng H; 2013 Sep; 227(9):1020-6. PubMed ID: 23804952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations.
    Alharbi N; Osman R; Wismeijer D
    J Prosthet Dent; 2016 Jun; 115(6):760-7. PubMed ID: 26803175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printed Silicones with Shape Morphing and Low-Temperature Ultraelasticity.
    Zhang C; Liao E; Li C; Zhang Y; Chen Y; Lu A; Liu Y; Geng C
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4549-4558. PubMed ID: 36642888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Architected Polymer Foams via Direct Bubble Writing.
    Visser CW; Amato DN; Mueller J; Lewis JA
    Adv Mater; 2019 Nov; 31(46):e1904668. PubMed ID: 31535777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the deformation behavior of intermediate porosity interconnected Ti foams using micro-computed tomography and direct finite element modeling.
    Singh R; Lee PD; Lindley TC; Kohlhauser C; Hellmich C; Bram M; Imwinkelried T; Dashwood RJ
    Acta Biomater; 2010 Jun; 6(6):2342-51. PubMed ID: 19961958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanics and design of a lightweight three-dimensional graphene assembly.
    Qin Z; Jung GS; Kang MJ; Buehler MJ
    Sci Adv; 2017 Jan; 3(1):e1601536. PubMed ID: 28070559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Architected cellular ceramics with tailored stiffness via direct foam writing.
    Muth JT; Dixon PG; Woish L; Gibson LJ; Lewis JA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1832-1837. PubMed ID: 28179570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of ultralight, super-elastic, hierarchical metallic meta-structures with i3DP technology.
    Zhang D; Xiao J; Moorlag C; Guo Q; Yang J
    Nanotechnology; 2017 Nov; 28(45):455708. PubMed ID: 28872049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralight metal foams.
    Jiang B; He C; Zhao N; Nash P; Shi C; Wang Z
    Sci Rep; 2015 Sep; 5():13825. PubMed ID: 26349002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks.
    Jakus AE; Koube KD; Geisendorfer NR; Shah RN
    Sci Rep; 2017 Mar; 7():44931. PubMed ID: 28317904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials.
    Mao Y; Ding Z; Yuan C; Ai S; Isakov M; Wu J; Wang T; Dunn ML; Qi HJ
    Sci Rep; 2016 Apr; 6():24761. PubMed ID: 27109063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Variety of the Stress-strain Response of Silicone Foam after Aging.
    Shao Z; Zhu M; Liang T; Wu F; Xu Z; Yang Y; Liu Y
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Scale Tomography Based Finite Element Modeling of Plasticity and Damage in Aluminum Foams.
    Amani Y; Dancette S; Maire E; Adrien J; Lachambre J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30326596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.