BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27117948)

  • 1. Three-Dimensional Printing: An Enabling Technology for IR.
    Sheth R; Balesh ER; Zhang YS; Hirsch JA; Khademhosseini A; Oklu R
    J Vasc Interv Radiol; 2016 Jun; 27(6):859-65. PubMed ID: 27117948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a 3D printed hollow aortic model to assist EVAR planning in a case with complex neck anatomy: potential of 3D printing to improve patient outcome.
    Tam MD; Latham T; Brown JR; Jakeways M
    J Endovasc Ther; 2014 Oct; 21(5):760-2. PubMed ID: 25290807
    [No Abstract]   [Full Text] [Related]  

  • 3. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy.
    Tam MD; Laycock SD; Brown JR; Jakeways M
    J Endovasc Ther; 2013 Dec; 20(6):863-7. PubMed ID: 24325705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Dimensional Aortic Model to Create a Fenestrated Stent Graft for the Urgent Treatment of a Paravisceral Penetrating Aortic Ulcer.
    Branzan D; Winkler D; Schmidt A; Scheinert D; Grunert R
    JACC Cardiovasc Interv; 2019 Apr; 12(8):793-795. PubMed ID: 30553713
    [No Abstract]   [Full Text] [Related]  

  • 5. Three-dimensional printing in cardiology: Current applications and future challenges.
    Luo H; Meyer-Szary J; Wang Z; Sabiniewicz R; Liu Y
    Cardiol J; 2017; 24(4):436-444. PubMed ID: 28541602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].
    Liu H; Weng Y; Zhang Y; Xu N; Tong J; Wang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Sep; 29(9):1088-91. PubMed ID: 26750005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser Printed 3D Model for Fenestrated Physician Modified Endografts: The Punch Card.
    Csobay-Novák C; Hüttl A; Sótonyi P
    Eur J Vasc Endovasc Surg; 2024 Jun; 67(6):1034. PubMed ID: 38588775
    [No Abstract]   [Full Text] [Related]  

  • 8. The Role of Three-Dimensional Printing in Contemporary Vascular and Endovascular Surgery: A Systematic Review.
    Tam CHA; Chan YC; Law Y; Cheng SWK
    Ann Vasc Surg; 2018 Nov; 53():243-254. PubMed ID: 30053547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional Printing and 3D Slicer: Powerful Tools in Understanding and Treating Structural Lung Disease.
    Cheng GZ; San Jose Estepar R; Folch E; Onieva J; Gangadharan S; Majid A
    Chest; 2016 May; 149(5):1136-42. PubMed ID: 26976347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical applications of three-dimensional printing in otolaryngology-head and neck surgery: A systematic review.
    Hong CJ; Giannopoulos AA; Hong BY; Witterick IJ; Irish JC; Lee J; Vescan A; Mitsouras D; Dang W; Campisi P; de Almeida JR; Monteiro E
    Laryngoscope; 2019 Sep; 129(9):2045-2052. PubMed ID: 30698840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional electromagnetic navigation vs. fluoroscopy for endovascular aneurysm repair: a prospective feasibility study in patients.
    Manstad-Hulaas F; Tangen GA; Dahl T; Hernes TA; Aadahl P
    J Endovasc Ther; 2012 Feb; 19(1):70-8. PubMed ID: 22313205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Applications of 3-Dimensional Printing Technology in Hip Joint.
    Xia RZ; Zhai ZJ; Chang YY; Li HW
    Orthop Surg; 2019 Aug; 11(4):533-544. PubMed ID: 31321905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery.
    Kurenov SN; Ionita C; Sammons D; Demmy TL
    J Thorac Cardiovasc Surg; 2015 Apr; 149(4):973-9.e1. PubMed ID: 25659851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of 3D Printing in Implantable Medical Devices.
    Wang Z; Yang Y
    Biomed Res Int; 2021; 2021():6653967. PubMed ID: 33521128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited commentary.
    Ohki T
    J Vasc Surg; 2010 Apr; 51(4):820. PubMed ID: 20347676
    [No Abstract]   [Full Text] [Related]  

  • 16. DIY 3D printing of custom orthopaedic implants: a proof of concept study.
    Frame M; Leach W
    Surg Technol Int; 2014 Mar; 24():314-7. PubMed ID: 24574013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of 3D printed models in obtaining informed consent to complex aortic surgery.
    Marone EM; Rinaldi LF; Pietrabissa A; Argenteri A
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):488-489. PubMed ID: 29145725
    [No Abstract]   [Full Text] [Related]  

  • 18. Trends in use of 3D printing in vascular surgery: a survey.
    Marti P; Lampus F; Benevento D; Setacci C
    Int Angiol; 2019 Oct; 38(5):418-424. PubMed ID: 31560185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Custom fenestration templates for endovascular repair of juxtarenal aortic aneurysms.
    Leotta DF; Starnes BW
    J Vasc Surg; 2015 Jun; 61(6):1637-41. PubMed ID: 25864045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.