These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27118076)
1. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger. Zhou CY; Li TB; Wang YT; Zhu XS; Kang J J Gen Appl Microbiol; 2016; 62(2):83-9. PubMed ID: 27118076 [TBL] [Abstract][Full Text] [Related]
2. Effect of introducing disulfide bridges in C-terminal structure on the thermostability of xylanase XynZF-2 from Aspergillus niger. Cai L; Zhang M; Shao T; He Y; Li J; Ren B; Zhou C J Gen Appl Microbiol; 2019 Dec; 65(5):240-245. PubMed ID: 30905899 [TBL] [Abstract][Full Text] [Related]
3. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance. Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645 [TBL] [Abstract][Full Text] [Related]
4. [Correlation between thermostability of the xylanase EvXyn11(TS) and its N-terminal disulfide bridge]. Min R; Li J; Gao S; Zhang H; Wu J; Wu M Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):346-52. PubMed ID: 23858709 [TBL] [Abstract][Full Text] [Related]
5. [Effect of N-terminal disulfide bridge on thermostability of family 11 xylanases]. Gao S; Wang J; Wu M; Tang C; Wu J Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1441-9. PubMed ID: 23593868 [TBL] [Abstract][Full Text] [Related]
6. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264. Xie J; Song L; Li X; Yi X; Xu H; Li J; Qiao D; Cao Y Curr Microbiol; 2011 Jan; 62(1):242-8. PubMed ID: 20593181 [TBL] [Abstract][Full Text] [Related]
7. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052 [TBL] [Abstract][Full Text] [Related]
8. [Enhancing stability of Trichoderma reesei xylanase (XYN II) by site-directed mutagenesis]. Han C; Yu S; Ouyang J; Li X; Zhou J; Xu Y Sheng Wu Gong Cheng Xue Bao; 2010 May; 26(5):623-9. PubMed ID: 20684306 [TBL] [Abstract][Full Text] [Related]
9. A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability. Yin X; Yao Y; Wu MC; Zhu TD; Zeng Y; Pang QF Biochemistry (Mosc); 2014 Jun; 79(6):531-7. PubMed ID: 25100011 [TBL] [Abstract][Full Text] [Related]
10. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger. Xu W; Liu Y; Ye Y; Liu M; Han L; Song A; Liu L Biotechnol Lett; 2016 Oct; 38(10):1739-45. PubMed ID: 27311309 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase. Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213 [TBL] [Abstract][Full Text] [Related]
12. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Qiu J; Han H; Sun B; Chen L; Yu C; Peng R; Yao Q Microbiol Res; 2016 Jan; 182():1-7. PubMed ID: 26686608 [TBL] [Abstract][Full Text] [Related]
13. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Wang Y; Fu Z; Huang H; Zhang H; Yao B; Xiong H; Turunen O Bioresour Technol; 2012 May; 112():275-9. PubMed ID: 22425398 [TBL] [Abstract][Full Text] [Related]
14. Sandwich fusion of CBM9_2 to enhance xylanase thermostability and activity. Yang A; Cheng J; Liu M; Shangguan Y; Liu L Int J Biol Macromol; 2018 Oct; 117():586-591. PubMed ID: 29852224 [TBL] [Abstract][Full Text] [Related]
15. Non-structured amino-acid impact on GH11 differs from GH10 xylanase. Liu L; Sun X; Yan P; Wang L; Chen H PLoS One; 2012; 7(9):e45762. PubMed ID: 23029229 [TBL] [Abstract][Full Text] [Related]
16. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. Li F; Xie J; Zhang X; Zhao L J Microbiol Biotechnol; 2015 Jan; 25(1):11-7. PubMed ID: 25152057 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Sun JY; Liu MQ; Xu YL; Xu ZR; Pan L; Gao H Protein Expr Purif; 2005 Jul; 42(1):122-30. PubMed ID: 15939297 [TBL] [Abstract][Full Text] [Related]
18. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487 [TBL] [Abstract][Full Text] [Related]
19. Exploration of disulfide bridge and N-glycosylation contributing to high thermostability of a hybrid xylanase. Tan Z; Tang C; Wu M; He Y; Hu D; Wang J Protein Pept Lett; 2014 Jul; 21(7):657-62. PubMed ID: 24693954 [TBL] [Abstract][Full Text] [Related]
20. Engineering the thermostability of a xylanase from Aspergillus oryzae by an enhancement of the interactions between the N-terminus extension and the β-sheet A2 of the enzyme. Chen Z; Zhang H; Wang J; Tang C; Wu J; Wu M Biotechnol Lett; 2013 Dec; 35(12):2073-9. PubMed ID: 23907668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]