These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 27118077)

  • 21. [Induction of nicotinic acid hydroxylase activity of Pseudomonas putida NA-1 and optimization of transformation conditions].
    Lu WH; Wang X; Xu L; Dai YJ; Yuan S
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):551-5. PubMed ID: 16245869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium--Pseudomonas putida CGMCC3830.
    Zhu X; Gong J; Li H; Lu Z; Zhou Z; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2014 Mar; 30(3):412-24. PubMed ID: 25007577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotransformation of amides to acids using a co-cross-linked enzyme aggregate of Rhodococcus erythropolis amidase.
    Park HJ; Uhm KN; Kim HK
    J Microbiol Biotechnol; 2010 Feb; 20(2):325-31. PubMed ID: 20208436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of R-stereospecific amidase from Brevibacterium epidermidis ZJB-07021.
    Ruan LT; Zheng RC; Zheng YG; Shen YC
    Int J Biol Macromol; 2016 May; 86():893-900. PubMed ID: 26868191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrile, amide and temperature effects on amidase-kinetics during acrylonitrile bioconversion by nitrile-hydratase/amidase in situ cascade system.
    Cantarella L; Gallifuoco A; Spera A; Cantarella M
    Bioresour Technol; 2013 Aug; 142():320-8. PubMed ID: 23747443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4).
    Singh NA; Shanmugam V
    J Basic Microbiol; 2012 Jun; 52(3):340-9. PubMed ID: 21953214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using directed evolution to probe the substrate specificity of mandelamide hydrolase.
    Wang PF; Yep A; Kenyon GL; McLeish MJ
    Protein Eng Des Sel; 2009 Feb; 22(2):103-10. PubMed ID: 19074156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.
    Lavrov KV; Zalunin IA; Kotlova EK; Yanenko AS
    Biochemistry (Mosc); 2010 Aug; 75(8):1006-13. PubMed ID: 21073421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nocardia globerula NHB-2: a versatile nitrile-degrading organism.
    Bhalla TC; Kumar H
    Can J Microbiol; 2005 Aug; 51(8):705-8. PubMed ID: 16234868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols.
    Ouyang SP; Liu Q; Sun SY; Chen JC; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):246-50. PubMed ID: 17826856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel amidase (half-amidase) for half-amide hydrolysis involved in the bacterial metabolism of cyclic imides.
    Soong CL; Ogawa J; Shimizu S
    Appl Environ Microbiol; 2000 May; 66(5):1947-52. PubMed ID: 10788365
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specificity and mechanism of mandelamide hydrolase catalysis.
    Adediran SA; Wang PF; Shilabin AG; Baron CA; McLeish MJ; Pratt RF
    Arch Biochem Biophys; 2017 Mar; 618():23-31. PubMed ID: 28129982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6.
    Brooks SJ; Doyle EM; Hewage C; Malthouse JP; Duetz W; O' Connor KE
    Appl Microbiol Biotechnol; 2004 May; 64(4):486-92. PubMed ID: 14647990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosynthetic Origin of the Hydroxamic Acid Moiety of Trichostatin A: Identification of Unprecedented Enzymatic Machinery Involved in Hydroxylamine Transfer.
    Kudo K; Ozaki T; Shin-Ya K; Nishiyama M; Kuzuyama T
    J Am Chem Soc; 2017 May; 139(20):6799-6802. PubMed ID: 28497964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel amidase catalysed process for the synthesis of vorinostat drug.
    Singh RV; Sharma H; Ganjoo A; Kumar A; Babu V
    J Appl Microbiol; 2020 Dec; 129(6):1589-1597. PubMed ID: 32594558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The aliphatic acylamide amidohydrolase of Mycobacterium smegmatis: its inducible nature and relation to acyl-transfer to hydroxylamine.
    Draper P
    J Gen Microbiol; 1967 Jan; 46(1):111-23. PubMed ID: 6030461
    [No Abstract]   [Full Text] [Related]  

  • 37. Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa.
    Woods MJ; Findlater JD; Orsi BA
    Biochim Biophys Acta; 1979 Mar; 567(1):225-37. PubMed ID: 110350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2.
    Agarwal S; Gupta M; Choudhury B
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):937-46. PubMed ID: 23794117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification studies on a thermo-active amidase of Geobacillus pallidus BTP-5x MTCC 9225 isolated from thermal springs of Tatapani (Himachal Pradesh).
    Sharma M; Sharma NN; Bhalla TC
    Appl Biochem Biotechnol; 2013 Jan; 169(1):1-14. PubMed ID: 23096998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational analysis of the hydantoin hydrolysis pathway in Pseudomonas putida RU-KM3S.
    Matcher GF; Burton SG; Dorrington RA
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):391-400. PubMed ID: 15064875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.