These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27118132)
1. Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO2 and nitrogen fertilization. Ekblad A; Mikusinska A; Ågren GI; Menichetti L; Wallander H; Vilgalys R; Bahr A; Eriksson U New Phytol; 2016 Aug; 211(3):874-85. PubMed ID: 27118132 [TBL] [Abstract][Full Text] [Related]
2. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. Parrent JL; Vilgalys R New Phytol; 2007; 176(1):164-174. PubMed ID: 17803647 [TBL] [Abstract][Full Text] [Related]
3. Changes in turnover rather than production regulate biomass of ectomycorrhizal fungal mycelium across a Pinus sylvestris chronosequence. Hagenbo A; Clemmensen KE; Finlay RD; Kyaschenko J; Lindahl BD; Fransson P; Ekblad A New Phytol; 2017 Apr; 214(1):424-431. PubMed ID: 27997034 [TBL] [Abstract][Full Text] [Related]
4. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. Hendricks JJ; Mitchell RJ; Kuehn KA; Pecot SD New Phytol; 2016 Mar; 209(4):1693-704. PubMed ID: 26537020 [TBL] [Abstract][Full Text] [Related]
5. Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests. Hagenbo A; Piñuela Y; Castaño C; Martínez de Aragón J; de-Miguel S; Alday JG; Bonet JA New Phytol; 2021 May; 230(4):1609-1622. PubMed ID: 33091152 [TBL] [Abstract][Full Text] [Related]
6. Response to CO2 enrichment of understory vegetation in the shade of forests. Kim D; Oren R; Qian SS Glob Chang Biol; 2016 Feb; 22(2):944-56. PubMed ID: 26463669 [TBL] [Abstract][Full Text] [Related]
7. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
8. Extramatrical mycelial biomass is mediated by fine root mass and ectomycorrhizal fungal community composition across tree species. Xie L; Palmroth S; Yin C; Oren R Sci Total Environ; 2024 Nov; 950():175175. PubMed ID: 39111434 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest. Sims SE; Hendricks JJ; Mitchell RJ; Kuehn KA; Pecot SD Mycorrhiza; 2007 Jun; 17(4):299-309. PubMed ID: 17260146 [TBL] [Abstract][Full Text] [Related]
10. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532 [TBL] [Abstract][Full Text] [Related]
11. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Matamala R; Gonzàlez-Meler MA; Jastrow JD; Norby RJ; Schlesinger WH Science; 2003 Nov; 302(5649):1385-7. PubMed ID: 14631037 [TBL] [Abstract][Full Text] [Related]
12. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580 [TBL] [Abstract][Full Text] [Related]
13. Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Parrent JL; Vilgalys R Mycorrhiza; 2009 Sep; 19(7):469-479. PubMed ID: 19415342 [TBL] [Abstract][Full Text] [Related]
14. The response of coarse root biomass to long-term CO Maier CA; Johnsen KH; Anderson PH; Palmroth S; Kim D; McCarthy HR; Oren R Glob Chang Biol; 2022 Feb; 28(4):1458-1476. PubMed ID: 34783402 [TBL] [Abstract][Full Text] [Related]
15. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Wallander H; Göransson H; Rosengren U Oecologia; 2004 Mar; 139(1):89-97. PubMed ID: 14727173 [TBL] [Abstract][Full Text] [Related]
16. Functional convergence in the decomposition of fungal necromass in soil and wood. Maillard F; Schilling J; Andrews E; Schreiner KM; Kennedy P FEMS Microbiol Ecol; 2020 Feb; 96(2):. PubMed ID: 31868883 [TBL] [Abstract][Full Text] [Related]
17. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂. Meier IC; Pritchard SG; Brzostek ER; McCormack ML; Phillips RP New Phytol; 2015 Feb; 205(3):1164-1174. PubMed ID: 25348688 [TBL] [Abstract][Full Text] [Related]
18. Carbon-nitrogen relations of ectomycorrhizal mycelium across a natural nitrogen supply gradient in boreal forest. Högberg MN; Högberg P; Wallander H; Nilsson LO New Phytol; 2021 Nov; 232(4):1839-1848. PubMed ID: 34449884 [TBL] [Abstract][Full Text] [Related]
19. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Fransson PM; Taylor AF; Finlay RD Mycorrhiza; 2005 Jan; 15(1):25-31. PubMed ID: 14750001 [TBL] [Abstract][Full Text] [Related]
20. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Phillips RP; Finzi AC; Bernhardt ES Ecol Lett; 2011 Feb; 14(2):187-94. PubMed ID: 21176050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]