These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27118188)

  • 1. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective.
    Meena SK; Celiksoy S; Schäfer P; Henkel A; Sönnichsen C; Sulpizi M
    Phys Chem Chem Phys; 2016 May; 18(19):13246-54. PubMed ID: 27118188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The implication of adsorption preferences of ions and surfactants on the shape control of gold nanoparticles: a microscopic, atomistic perspective.
    Meena SK; Meena C
    Nanoscale; 2021 Dec; 13(46):19549-19560. PubMed ID: 34806728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Gold Nanoseeds to Nanorods: The Microscopic Origin of the Anisotropic Growth.
    Meena SK; Sulpizi M
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11960-4. PubMed ID: 27560039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations.
    Meena SK; Sulpizi M
    Langmuir; 2013 Dec; 29(48):14954-61. PubMed ID: 24224887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of controlled anisotropic growth of monodisperse gold nanobipyramids.
    Meena SK; Lerouge F; Baldeck P; Andraud C; Garavelli M; Parola S; Sulpizi M; Rivalta I
    Nanoscale; 2021 Sep; 13(36):15292-15300. PubMed ID: 34486622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth Mechanism of Gold Nanorods: the Effect of Tip-Surface Curvature As Revealed by Molecular Dynamics Simulations.
    da Silva JA; Netz PA; Meneghetti MR
    Langmuir; 2020 Jan; 36(1):257-263. PubMed ID: 31841340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods.
    Hore MJ; Ye X; Ford J; Gao Y; Fei J; Wu Q; Rowan SJ; Composto RJ; Murray CB; Hammouda B
    Nano Lett; 2015 Sep; 15(9):5730-8. PubMed ID: 26292087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold.
    Zhang Z; Li H; Zhang F; Wu Y; Guo Z; Zhou L; Li J
    Langmuir; 2014 Mar; 30(10):2648-59. PubMed ID: 24552456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant (bi)layers on gold nanorods.
    Gómez-Graña S; Hubert F; Testard F; Guerrero-Martínez A; Grillo I; Liz-Marzán LM; Spalla O
    Langmuir; 2012 Jan; 28(2):1453-9. PubMed ID: 22165910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Anisotropic Growth of Au Penta-Twinned Nanorods by Liquid Cell Transmission Electron Microscopy.
    Jin B; Sushko ML; Liu Z; Cao X; Jin C; Tang R
    J Phys Chem Lett; 2019 Apr; 10(7):1443-1449. PubMed ID: 30856333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Nanoparticle's Surface Electrostatic Potential in Solution Using Acid-Base Molecular Probes II: Insight from Atomistic Simulations of Micelles.
    Farafonov VS; Lebed AV; Nerukh DA; Mchedlov-Petrossyan NO
    J Phys Chem B; 2023 Feb; 127(4):1031-1038. PubMed ID: 36657036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining rules for the shape evolution of gold nanoparticles.
    Langille MR; Personick ML; Zhang J; Mirkin CA
    J Am Chem Soc; 2012 Sep; 134(35):14542-54. PubMed ID: 22920241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.
    Gao HM; Liu H; Qian HJ; Jiao GS; Lu ZY
    Phys Chem Chem Phys; 2018 Jan; 20(3):1381-1394. PubMed ID: 29271449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of a CTAB surfactant on gold nanoparticles: a united-atom molecular dynamics study.
    Kalipillai P; Raghuram E; Bandyopadhyay S; Mani E
    Phys Chem Chem Phys; 2022 Nov; 24(46):28353-28361. PubMed ID: 36385573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles.
    Sangwai AV; Sureshkumar R
    Langmuir; 2011 Jun; 27(11):6628-38. PubMed ID: 21524093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulation of the pH-Induced Structural Transitions in CTAB/NaSal Solution.
    Yan H; Han Z; Li K; Li G; Wei X
    Langmuir; 2018 Jan; 34(1):351-358. PubMed ID: 29215892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise Preparation of Spherical Gold Nanoparticles Passivated with Cationic Amphiphiles.
    Inoue Y; Tsutamoto Y; Muko D; Nanamura K; Sawada T; Niidome Y
    Anal Sci; 2016; 32(8):875-80. PubMed ID: 27506714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 2. Au(100) and the role of crystallographic-dependent adsorption in the formation of anisotropic nanoparticles.
    Vivek JP; Burgess IJ
    Langmuir; 2012 Mar; 28(11):5040-7. PubMed ID: 22375834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods.
    Almora-Barrios N; Novell-Leruth G; Whiting P; Liz-Marzán LM; López N
    Nano Lett; 2014 Feb; 14(2):871-5. PubMed ID: 24397442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation.
    Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ
    Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.