These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 27118372)

  • 41. F-wave of single firing motor units: correct or misleading criterion of motoneuron excitability in humans?
    Kudina LP; Andreeva RE
    Neurol Sci; 2017 Mar; 38(3):465-472. PubMed ID: 28039540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motor neuron firing dysfunction in spastic patients with primary lateral sclerosis.
    Floeter MK; Zhai P; Saigal R; Kim Y; Statland J
    J Neurophysiol; 2005 Aug; 94(2):919-27. PubMed ID: 15829597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intrinsic properties of deep dorsal horn neurons in the L6-S1 spinal cord of the intact rat.
    Jiang MC; Cleland CL; Gebhart GF
    J Neurophysiol; 1995 Nov; 74(5):1819-27. PubMed ID: 8592176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Motor unit behavior in canine motor neuron disease.
    Pinter MJ; Waldeck RF; Wallace N; Cork LC
    J Neurosci; 1995 May; 15(5 Pt 1):3447-57. PubMed ID: 7751923
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental evaluation of input-output models of motoneuron discharge.
    Powers RK; Binder MD
    J Neurophysiol; 1996 Jan; 75(1):367-79. PubMed ID: 8822564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluctuations of excitability in the monosynaptic reflex pathway to lumbar motoneurons in the cat.
    Gossard JP; Floeter MK; Kawai Y; Burke RE; Chang T; Schiff SJ
    J Neurophysiol; 1994 Sep; 72(3):1227-39. PubMed ID: 7807207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Motor unit firing rates and firing rate variability in the detection of neuromuscular disorders.
    Dorfman LJ; Howard JE; McGill KC
    Electroencephalogr Clin Neurophysiol; 1989 Sep; 73(3):215-24. PubMed ID: 2475326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electromyogram power spectra frequencies associated with motor unit recruitment strategies.
    Solomonow M; Baten C; Smit J; Baratta R; Hermens H; D'Ambrosia R; Shoji H
    J Appl Physiol (1985); 1990 Mar; 68(3):1177-85. PubMed ID: 2341343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties.
    Gorassini M; Bennett DJ; Kiehn O; Eken T; Hultborn H
    J Neurophysiol; 1999 Aug; 82(2):709-17. PubMed ID: 10444668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats.
    Bennett DJ; Hultborn H; Fedirchuk B; Gorassini M
    J Neurophysiol; 1998 Oct; 80(4):2023-37. PubMed ID: 9772258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonuniform fatigue characteristics of slow-twitch motor units activated at a fixed percentage of their maximum tetanic tension.
    Cope TC; Webb CB; Yee AK; Botterman BR
    J Neurophysiol; 1991 Nov; 66(5):1483-92. PubMed ID: 1765789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of Ighmbp2 in motor neurons and implications for the pathomechanism in a mouse model of human spinal muscular atrophy with respiratory distress type 1 (SMARD1).
    Grohmann K; Rossoll W; Kobsar I; Holtmann B; Jablonka S; Wessig C; Stoltenburg-Didinger G; Fischer U; Hübner C; Martini R; Sendtner M
    Hum Mol Genet; 2004 Sep; 13(18):2031-42. PubMed ID: 15269181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of motoneuronal firing behavior after spinal cord injury using intraspinal microstimulation current pulses: a modeling study.
    Elbasiouny SM; Mushahwar VK
    J Appl Physiol (1985); 2007 Jul; 103(1):276-86. PubMed ID: 17234800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Voluntary drive-dependent changes in vastus lateralis motor unit firing rates during a sustained isometric contraction at 50% of maximum knee extension force.
    de Ruiter CJ; Elzinga MJ; Verdijk PW; van Mechelen W; de Haan A
    Pflugers Arch; 2004 Jan; 447(4):436-44. PubMed ID: 14634824
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review.
    Beck TW; Housh TJ; Johnson GO; Cramer JT; Weir JP; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):1-13. PubMed ID: 16497517
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.
    Harvey PJ; Li X; Li Y; Bennett DJ
    J Neurophysiol; 2006 Sep; 96(3):1158-70. PubMed ID: 16707714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.