These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27118444)

  • 1. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly.
    Tseng YT; Cherng R; Harroun SG; Yuan Z; Lin TY; Wu CW; Chang HT; Huang CC
    Nanoscale; 2016 May; 8(18):9771-9. PubMed ID: 27118444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-mediated modulation of the emission of gold nanodots.
    Tseng YT; Cherng R; Yuan Z; Wu CW; Chang HT; Huang CC
    Nanoscale; 2016 Mar; 8(9):5162-9. PubMed ID: 26877145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Optical Properties, and Sensing Applications of Gold Nanodots.
    Ravindranath R; Roy P; Chang HT
    Chem Rec; 2016 Jun; 16(3):1664-75. PubMed ID: 27243417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of highly luminescent mannose-gold nanodots for detection and inhibition of growth of Escherichia coli.
    Tseng YT; Chang HT; Chen CT; Chen CH; Huang CC
    Biosens Bioelectron; 2011 Sep; 27(1):95-100. PubMed ID: 21757332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples.
    Chen LY; Huang CC; Chen WY; Lin HJ; Chang HT
    Biosens Bioelectron; 2013 May; 43():38-44. PubMed ID: 23274195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoassisted synthesis of luminescent mannose-Au nanodots for the detection of thyroglobulin in serum.
    Huang CC; Hung YL; Shiang YC; Lin TY; Lin YS; Chen CT; Chang HT
    Chem Asian J; 2010 Feb; 5(2):334-41. PubMed ID: 20063339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosts electrochemical reactions in the visible-NIR region.
    Chen G; Sun M; Li J; Zhu M; Lou Z; Li B
    Nanoscale; 2019 Oct; 11(40):18874-18880. PubMed ID: 31596285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ligand-ligand interactions on the formation of photoluminescent gold nanoclusters embedded in Au(i)-thiolate supramolecules.
    Chang HY; Tseng YT; Yuan Z; Chou HL; Chen CH; Hwang BJ; Tsai MC; Chang HT; Huang CC
    Phys Chem Chem Phys; 2017 May; 19(19):12085-12093. PubMed ID: 28443925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli.
    Huang CC; Chen CT; Shiang YC; Lin ZH; Chang HT
    Anal Chem; 2009 Feb; 81(3):875-82. PubMed ID: 19119843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters.
    Le Guevel X; Tagit O; Rodríguez CE; Trouillet V; Pernia Leal M; Hildebrandt N
    Nanoscale; 2014 Jul; 6(14):8091-9. PubMed ID: 24916121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite.
    Chen WY; Huang CC; Chen LY; Chang HT
    Nanoscale; 2014 Oct; 6(19):11078-83. PubMed ID: 25154909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of photoluminescent Au ND-PNIPAM hybrid microgel for the detection of Hg2+.
    Chen LY; Ou CM; Chen WY; Huang CC; Chang HT
    ACS Appl Mater Interfaces; 2013 May; 5(10):4383-8. PubMed ID: 23618348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysorbate- and DNA-Mediated Synthesis and Strong, Stable, and Tunable Near-Infrared Photoluminescence of Plasmonic Long-Body Nanosnowmen.
    Kim J; Kim JM; Ha M; Oh JW; Nam JM
    ACS Nano; 2021 Dec; 15(12):19853-19863. PubMed ID: 34807582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma.
    Shiang YC; Lin CA; Huang CC; Chang HT
    Analyst; 2011 Mar; 136(6):1177-82. PubMed ID: 21267483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of highly fluorescent gold nanoclusters and their use in sensitive analysis of metal ions.
    Yang Y; Han A; Li R; Fang G; Liu J; Wang S
    Analyst; 2017 Nov; 142(23):4486-4493. PubMed ID: 29094138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Emission Mechanism of Gold Nanoclusters Capped with 11-Mercaptoundecanoic Acid, and the Detection of Methanol in Adulterated Wine Model.
    Wei M; Tian Y; Wang L; Hong Y; Luo D; Sha Y
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid-stabilized Au-nanoparticles.
    He P; Urban MW
    Biomacromolecules; 2005; 6(3):1224-5. PubMed ID: 15877336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells.
    Abdulla-Al-Mamun M; Kusumoto Y; Zannat T; Islam MS
    Phys Chem Chem Phys; 2011 Dec; 13(47):21026-34. PubMed ID: 22011673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly luminescent near-infrared-emitting gold nanoclusters with further natural etching: photoluminescence and Hg2+ detection.
    Lian S; Hu D; Zeng C; Zhang P; Liu S; Cai L
    Nanoscale Res Lett; 2012 Jun; 7(1):348. PubMed ID: 22738180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source of Bright Near-Infrared Luminescence in Gold Nanoclusters.
    Li Q; Zeman CJ; Schatz GC; Gu XW
    ACS Nano; 2021 Oct; 15(10):16095-16105. PubMed ID: 34613697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.