These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27118654)

  • 1. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine.
    Long T; Guo Y; Lin M; Yuan M; Liu Z; Huang C
    Nanoscale; 2016 May; 8(18):9764-70. PubMed ID: 27118654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Active Ultrafine Au-Ag Alloy Nanoparticles Used for Colorimetric Chiral Recognition and Circular Dichroism Sensing of Enantiomers.
    Wei J; Guo Y; Li J; Yuan M; Long T; Liu Z
    Anal Chem; 2017 Sep; 89(18):9781-9787. PubMed ID: 28832124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch.
    Zhao M; Feng H; Han J; Ao H; Qian Z
    Anal Chim Acta; 2017 Sep; 984():202-210. PubMed ID: 28843565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state thiolate-stabilized copper nanoclusters with ultrahigh photoluminescence quantum yield for white light-emitting devices.
    Deng HH; Zhuang QQ; Huang KY; Balasubramanian P; Lin Z; Peng HP; Xia XH; Chen W
    Nanoscale; 2020 Jul; 12(29):15791-15799. PubMed ID: 32729883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines.
    Yao H; Miki K; Nishida N; Sasaki A; Kimura K
    J Am Chem Soc; 2005 Nov; 127(44):15536-43. PubMed ID: 16262418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging.
    Wang C; Yao Y; Song Q
    Colloids Surf B Biointerfaces; 2016 Apr; 140():373-381. PubMed ID: 26774573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. d-Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange.
    Kong L; Chu X; Wang C; Zhou H; Wu Y; Liu W
    Nanoscale; 2018 Jan; 10(4):1631-1640. PubMed ID: 29308818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications.
    Jia X; Yang X; Li J; Li D; Wang E
    Chem Commun (Camb); 2014 Jan; 50(2):237-9. PubMed ID: 24225847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu nanoclusters with aggregation induced emission enhancement.
    Jia X; Li J; Wang E
    Small; 2013 Nov; 9(22):3873-9. PubMed ID: 23670847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive aggregation-induced emission strategy for imaging of aluminum ions in cellular microenvironment.
    Huang Y; Huang J; Wang Y; Ma F; Ji J; Lei J
    Talanta; 2020 May; 211():120699. PubMed ID: 32070559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Guided Self-Assembly of Copper Nanoclusters with Aggregation-Induced Emission.
    Su X; Liu J
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3902-3910. PubMed ID: 28067503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleancap-Regulated Aggregation-Induced Emission Strategy for Highly Specific Analysis of Enzyme.
    Huang Y; Zhu L; Ji J; Li Y; Liu T; Lei J
    Anal Chem; 2020 Apr; 92(7):4726-4730. PubMed ID: 32167303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-Induced Modulation in the Optical Properties of Copper Nanoclusters and Revealing the Isomeric Effect of Templates.
    Mahato P; Thomas AS; Yadav R; Rai S; Shekhar S; Mukherjee S
    Chem Asian J; 2023 Aug; 18(16):e202300442. PubMed ID: 37368476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Regulated Synthesis of Trypsin-Templated Copper Nanoclusters with Blue and Yellow Fluorescent Emission.
    Feng J; Chen Y; Han Y; Liu J; Ma S; Zhang H; Chen X
    ACS Omega; 2017 Dec; 2(12):9109-9117. PubMed ID: 30023601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1.
    Luo Y; Miao H; Yang X
    Talanta; 2015 Nov; 144():488-95. PubMed ID: 26452852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb(2+) in living cells.
    Wang C; Cheng H; Huang Y; Xu Z; Lin H; Zhang C
    Analyst; 2015 Aug; 140(16):5634-9. PubMed ID: 26133700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimuli-Responsive Fluorescent Nanoswitches: Solvent-Induced Emission Enhancement of Copper Nanoclusters.
    Yuan J; Wang L; Wang Y; Hao J
    Chemistry; 2020 Mar; 26(16):3545-3554. PubMed ID: 31821645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the Self-Assembly Induced Emission of Cu Nanoclusters by Au(I) Doping.
    Liu J; Wu Z; Tian Y; Li Y; Ai L; Li T; Zou H; Liu Y; Zhang X; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24899-24907. PubMed ID: 28715191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Cancer Cells through Intracellular Aggregation-Induced Emission Kinetic Rate of Copper Nanoclusters.
    Dutta A; Goswami U; Chattopadhyay A
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19459-19472. PubMed ID: 29775047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral separation with ligand-exchange micellar electrokinetic chromatography using a D-penicillamine-copper(II) ternary complex as chiral selector.
    Zheng ZX; Lin JM; Qu F; Hobo T
    Electrophoresis; 2003 Dec; 24(24):4221-6. PubMed ID: 14679569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.