These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2711873)

  • 1. Gangliosides of the mouse spinal cord: a comparison in in vivo and in vitro tissues.
    Baker RE; Guérold B; Dreyfus H
    Int J Dev Neurosci; 1989; 7(1):93-101. PubMed ID: 2711873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of gangliosides on the development of selective afferent connections within fetal mouse spinal cord explants.
    Baker RE
    Neurosci Lett; 1983 Oct; 41(1-2):81-4. PubMed ID: 6646520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-selective afferent innervation develops in embryonic mouse spinal cord-dorsal root ganglia explants chronically exposed to GM1 ganglioside.
    Baker RE; Janzen DG
    Int J Dev Neurosci; 1989; 7(1):87-92. PubMed ID: 2711872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gangliosides restore the specificity of afferent projection patterns in spinal cord explants chronically exposed to tetrodotoxin.
    Baker RE; van der Togt C
    Neurosci Lett; 1986 Jun; 67(3):285-8. PubMed ID: 3737016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of fetal mouse spinal cord-dorsal root ganglion explants to study the factors underlying selective connections in vitro.
    Baker RE
    Acta Biol Hung; 1988; 39(2-3):135-43. PubMed ID: 3077000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroquine intoxication induces ganglioside storage in nervous tissue: a chemical and histopathological study of brain, spinal cord, dorsal root ganglia, and retinal in the miniature pig.
    Klinghardt GW; Fredman P; Svennerholm L
    J Neurochem; 1981 Oct; 37(4):897-908. PubMed ID: 7320729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of growth environment on the ganglioside composition of an experimental mouse brain tumor.
    el-Abbadi M; Seyfried TN
    Mol Chem Neuropathol; 1994; 21(2-3):273-85. PubMed ID: 8086038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ganglioside potentiation of NGF-independent conditioned medium enhancement of neuritic outgrowth from spinal cord and ciliary ganglia explants.
    Spoerri PE; Roisen FJ
    Int J Dev Neurosci; 1988; 6(3):223-32. PubMed ID: 3213581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen action in fetal mouse spinal cord cultures: metabolic and morphologic aspects.
    Hauser KF; MacLusky NJ; Toran-Allerand CD
    Brain Res; 1987 Mar; 406(1-2):62-72. PubMed ID: 3567640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-whole white matter serum inhibits incorporation of glucose and galactose into the lipids of myelinating spinal cord cultures.
    Lehrer GM; Maker HS; Silides DJ; Weiss C; Bornstein MB
    J Neurochem; 1978 Jan; 30(1):247-51. PubMed ID: 621510
    [No Abstract]   [Full Text] [Related]  

  • 11. Ganglioside biosynthetic gene expression in experimental mouse brain tumors.
    Ecsedy JA; Manfredi MG; Yohe HC; Seyfried TN
    Cancer Res; 1997 Apr; 57(8):1580-3. PubMed ID: 9108463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of ganglioside expression in human melanoma cells: immunological and biochemical analysis.
    Kawashima I; Ozawa H; Kotani M; Suzuki M; Kawano T; Gomibuchi M; Tai T
    J Biochem; 1993 Aug; 114(2):186-93. PubMed ID: 8262898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat dorsal root ganglion gangliosides during early development until senescence.
    Ohsawa T
    Mech Ageing Dev; 1990 Apr; 53(3):259-66. PubMed ID: 2376985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of opioid sensitivity of fetal mouse dorsal root ganglion neuron perikarya in organotypic cultures: regulation by spinal cord.
    Chalazonitis A; Crain SM
    Neuroscience; 1986 Apr; 17(4):1181-98. PubMed ID: 3520378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon filaments provide support and directionality to growing rat fetal spinal cord explants.
    Khan T; Sayers S; Gaik G; Dauzvardis M
    Neurosci Lett; 1990 Oct; 118(2):172-6. PubMed ID: 2274266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic suppression of bioelectric activity on the development of sensory ganglion evoked responses in spinal cord explants.
    Baker RE; Corner MA; Habets AM
    J Neurosci; 1984 May; 4(5):1187-92. PubMed ID: 6726324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels of amino acid neurotransmitters during neurogenesis and in histotypic cultures of mouse spinal cord.
    Miranda-Contreras L; Benítez-Díaz P; Peña-Contreras Z; Mendoza-Briceño RV; Palacios-Prü E
    Dev Neurosci; 2002; 24(1):59-70. PubMed ID: 12145411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetanus toxin binding to mouse spinal cord cells: an evaluation of the role of gangliosides in toxin internalization.
    Parton RG; Ockleford CD; Critchley DR
    Brain Res; 1988 Dec; 475(1):118-27. PubMed ID: 3145781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in serotonin levels in the chick spinal cord and brain.
    Okado N; Shibanoki S; Ishikawa K; Sako H
    Brain Res Dev Brain Res; 1989 Dec; 50(2):217-23. PubMed ID: 2611984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of glycosidases and gangliosides in the rat central nervous system.
    Prasad VV
    Int J Dev Neurosci; 1996 Jul; 14(4):481-7. PubMed ID: 8884381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.