BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27119123)

  • 21. Calorimetric and spectroscopic studies on solvation energetics for H₂ storage in the CO₂/HCOOH system.
    Fink C; Katsyuba S; Laurenczy G
    Phys Chem Chem Phys; 2016 Apr; 18(16):10764-73. PubMed ID: 26890151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dendrimer-Stabilized Metal Nanoparticles as Efficient Catalysts for Reversible Dehydrogenation/Hydrogenation of N-Heterocycles.
    Deraedt C; Ye R; Ralston WT; Toste FD; Somorjai GA
    J Am Chem Soc; 2017 Dec; 139(49):18084-18092. PubMed ID: 29144751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pincer-Type Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress.
    Werkmeister S; Neumann J; Junge K; Beller M
    Chemistry; 2015 Aug; 21(35):12226-50. PubMed ID: 26179375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photocatalytic Dehydrogenation of Formic Acid on CdS Nanorods through Ni and Co Redox Mediation under Mild Conditions.
    Nasir JA; Hafeez M; Arshad M; Ali NZ; Teixeira IF; McPherson I; Zia-Ur-Rehman ; Khan MA
    ChemSusChem; 2018 Aug; 11(15):2587-2592. PubMed ID: 29847705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insights into HCO
    Wonglakhon T; Surawatanawong P
    Dalton Trans; 2018 Dec; 47(47):17020-17031. PubMed ID: 30460951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iridacycles for hydrogenation and dehydrogenation reactions.
    Wang C; Xiao J
    Chem Commun (Camb); 2017 Mar; 53(24):3399-3411. PubMed ID: 28281714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile synthesis of AuPd nanoparticles anchored on TiO
    Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L
    Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formic Acid Dehydrogenation over Ru- and Pd-Based Catalysts: Gas- vs. Liquid-Phase Reactions.
    Ruiz-López E; Ribota Peláez M; Blasco Ruz M; Domínguez Leal MI; Martínez Tejada M; Ivanova S; Centeno MÁ
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.
    Fink C; Montandon-Clerc M; Laurenczy G
    Chimia (Aarau); 2015; 69(12):746-752. PubMed ID: 26842324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CO
    Fink C; Laurenczy G
    Dalton Trans; 2017 Jan; 46(5):1670-1676. PubMed ID: 28098294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.
    Yu X; Wu T; Yang XJ; Xu J; Auzam J; Semiat R; Han YF
    J Hazard Mater; 2016 Mar; 305():178-189. PubMed ID: 26685065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.
    Chelucci G; Baldino S; Baratta W
    Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation.
    Shao Z; Li Y; Liu C; Ai W; Luo SP; Liu Q
    Nat Commun; 2020 Jan; 11(1):591. PubMed ID: 32001679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts.
    Zhou MJ; Miao Y; Gu Y; Xie Y
    Adv Mater; 2024 Feb; ():e2311355. PubMed ID: 38374727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2-(N-Methylbenzyl)pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H
    Oh J; Jeong K; Kim TW; Kwon H; Han JW; Park JH; Suh YW
    ChemSusChem; 2018 Feb; 11(4):661-665. PubMed ID: 29282876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.