These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27119123)

  • 41. Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: synergistic effect of Pd-Ni alloying on hydrogen release.
    Tamarany R; Shin DY; Kang S; Jeong H; Kim J; Kim J; Yoon CW; Lim DH
    Phys Chem Chem Phys; 2021 May; 23(19):11515-11527. PubMed ID: 33960334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One site is enough: a theoretical investigation of iron-catalyzed dehydrogenation of formic Acid.
    Sánchez-de-Armas R; Xue L; Ahlquist MS
    Chemistry; 2013 Sep; 19(36):11869-73. PubMed ID: 23907850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrrolic Nitrogen Boosted H
    Sun Y; Xiao Y; Ren L; Cheng Z; Niu Y; Li Z; Zhang S
    J Phys Chem Lett; 2024 May; 15(17):4538-4545. PubMed ID: 38636086
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.
    Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M
    Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient [Fe-Imidazole@SiO
    Gkatziouras C; Solakidou M; Louloudi M
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.
    Peng CY; Kang L; Cao S; Chen Y; Lin ZS; Fu WF
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15725-9. PubMed ID: 26545954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogenation of CO
    Gelman-Tropp S; Kirillov E; Hey-Hawkins E; Gelman D
    Chemistry; 2023 Nov; 29(63):e202301915. PubMed ID: 37602815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrogen from formic acid through its selective disproportionation over sodium germanate--a non-transition-metal catalysis system.
    Amos RI; Heinroth F; Chan B; Zheng S; Haynes BS; Easton CJ; Masters AF; Radom L; Maschmeyer T
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11275-9. PubMed ID: 25169798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon neutral hydrogen storage and release cycles based on dual-functional roles of formamides.
    Wei D; Shi X; Junge H; Du C; Beller M
    Nat Commun; 2023 Jun; 14(1):3726. PubMed ID: 37349304
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metal-free dehydrogenation of formic acid to H
    Chauvier C; Tlili A; Das Neves Gomes C; Thuéry P; Cantat T
    Chem Sci; 2015 May; 6(5):2938-2942. PubMed ID: 29308170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.
    Ganguly G; Malakar T; Paul A
    ChemSusChem; 2016 Jun; 9(12):1386-91. PubMed ID: 27174725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study.
    Fellay C; Yan N; Dyson PJ; Laurenczy G
    Chemistry; 2009; 15(15):3752-60. PubMed ID: 19229942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO
    Álvarez A; Bansode A; Urakawa A; Bavykina AV; Wezendonk TA; Makkee M; Gascon J; Kapteijn F
    Chem Rev; 2017 Jul; 117(14):9804-9838. PubMed ID: 28656757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.
    Xie X; Ma X; Liu P; Shang J; Li X; Liu T
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5937-5946. PubMed ID: 28121127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dehydrogenation of Formic Acid by Heterogeneous Catalysts.
    Li J; Zhu QL; Xu Q
    Chimia (Aarau); 2015; 69(6):348-52. PubMed ID: 26507481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent progress of heterogeneous catalysts for transfer hydrogenation under the background of carbon neutrality.
    Chen G; Ma J; Gong W; Li J; Li Z; Long R; Xiong Y
    Nanoscale; 2024 Jan; 16(3):1038-1057. PubMed ID: 38126462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen generation from formic acid and alcohols using homogeneous catalysts.
    Johnson TC; Morris DJ; Wills M
    Chem Soc Rev; 2010 Jan; 39(1):81-8. PubMed ID: 20023839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.