These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A freely available semi-automated method for quantifying retinal ganglion cells in entire retinal flatmounts. Geeraerts E; Dekeyster E; Gaublomme D; Salinas-Navarro M; De Groef L; Moons L Exp Eye Res; 2016 Jun; 147():105-113. PubMed ID: 27107795 [TBL] [Abstract][Full Text] [Related]
3. A novel retinal ganglion cell quantification tool based on deep learning. Masin L; Claes M; Bergmans S; Cools L; Andries L; Davis BM; Moons L; De Groef L Sci Rep; 2021 Jan; 11(1):702. PubMed ID: 33436866 [TBL] [Abstract][Full Text] [Related]
4. Software for Quantifying and Batch Processing Images of Brn3a and RBPMS Immunolabelled Retinal Ganglion Cells in Retinal Wholemounts. Guymer C; Damp L; Chidlow G; Wood J; Tang YF; Casson R Transl Vis Sci Technol; 2020 May; 9(6):28. PubMed ID: 32821525 [TBL] [Abstract][Full Text] [Related]
5. Using CellProfiler to Analyze and Quantify Vascular Morphology. Campbell L; Kumar M; Turner S Methods Mol Biol; 2017; 1544():179-189. PubMed ID: 28050836 [TBL] [Abstract][Full Text] [Related]
7. RetFM-J, an ImageJ-based module for automated counting and quantifying features of nuclei in retinal whole-mounts. Hedberg-Buenz A; Christopher MA; Lewis CJ; Meyer KJ; Rudd DS; Dutca LM; Wang K; Garvin MK; Scheetz TE; Abràmoff MD; Harper MM; Anderson MG Exp Eye Res; 2016 May; 146():386-392. PubMed ID: 26283021 [TBL] [Abstract][Full Text] [Related]
8. A semi-automated technique for labeling and counting of apoptosing retinal cells. Bizrah M; Dakin SC; Guo L; Rahman F; Parnell M; Normando E; Nizari S; Davis B; Younis A; Cordeiro MF BMC Bioinformatics; 2014 Jun; 15():169. PubMed ID: 24902592 [TBL] [Abstract][Full Text] [Related]
9. Automated Classification of Cellular Phenotypes Using Machine Learning in Cellprofiler and CellProfiler Analyst. Kornhuber M; Dunst S Methods Mol Biol; 2022; 2488():207-226. PubMed ID: 35347691 [TBL] [Abstract][Full Text] [Related]
12. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis. Stirling DR; Carpenter AE; Cimini BA Bioinformatics; 2021 Nov; 37(21):3992-3994. PubMed ID: 34478488 [TBL] [Abstract][Full Text] [Related]
13. Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler. Bray MA; Carpenter AE Methods Mol Biol; 2018; 1683():89-112. PubMed ID: 29082489 [TBL] [Abstract][Full Text] [Related]
14. Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5. Zhang J; Huo YB; Yang JL; Wang XZ; Yan BY; Du XH; Hao RQ; Yang F; Liu JX; Liu L; Liu Y; Zhang HB Zool Res; 2022 Sep; 43(5):738-749. PubMed ID: 35927396 [TBL] [Abstract][Full Text] [Related]
15. CellProfiler Analyst: data exploration and analysis software for complex image-based screens. Jones TR; Kang IH; Wheeler DB; Lindquist RA; Papallo A; Sabatini DM; Golland P; Carpenter AE BMC Bioinformatics; 2008 Nov; 9():482. PubMed ID: 19014601 [TBL] [Abstract][Full Text] [Related]
16. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698 [TBL] [Abstract][Full Text] [Related]
17. Comparison between two programs for image analysis, machine learning and subsequent classification. Ribeiro GP; Endringer DC; De Andrade TU; Lenz D Tissue Cell; 2019 Jun; 58():12-16. PubMed ID: 31133239 [TBL] [Abstract][Full Text] [Related]
18. Electroretinographical and histological study of mouse retina after optic nerve section: a comparison between wild-type and retinal degeneration 1 mice. Germain F; Istillarte M; Gómez-Vicente V; Pérez-Rico C; de la Villa P Clin Exp Ophthalmol; 2013 Aug; 41(6):593-602. PubMed ID: 23279351 [TBL] [Abstract][Full Text] [Related]