These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27119563)

  • 1. An open-source computational tool to automatically quantify immunolabeled retinal ganglion cells.
    Dordea AC; Bray MA; Allen K; Logan DJ; Fei F; Malhotra R; Gregory MS; Carpenter AE; Buys ES
    Exp Eye Res; 2016 Jun; 147():50-56. PubMed ID: 27119563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A freely available semi-automated method for quantifying retinal ganglion cells in entire retinal flatmounts.
    Geeraerts E; Dekeyster E; Gaublomme D; Salinas-Navarro M; De Groef L; Moons L
    Exp Eye Res; 2016 Jun; 147():105-113. PubMed ID: 27107795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel retinal ganglion cell quantification tool based on deep learning.
    Masin L; Claes M; Bergmans S; Cools L; Andries L; Davis BM; Moons L; De Groef L
    Sci Rep; 2021 Jan; 11(1):702. PubMed ID: 33436866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Software for Quantifying and Batch Processing Images of Brn3a and RBPMS Immunolabelled Retinal Ganglion Cells in Retinal Wholemounts.
    Guymer C; Damp L; Chidlow G; Wood J; Tang YF; Casson R
    Transl Vis Sci Technol; 2020 May; 9(6):28. PubMed ID: 32821525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using CellProfiler to Analyze and Quantify Vascular Morphology.
    Campbell L; Kumar M; Turner S
    Methods Mol Biol; 2017; 1544():179-189. PubMed ID: 28050836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AxoNet: A deep learning-based tool to count retinal ganglion cell axons.
    Ritch MD; Hannon BG; Read AT; Feola AJ; Cull GA; Reynaud J; Morrison JC; Burgoyne CF; Pardue MT; Ethier CR
    Sci Rep; 2020 May; 10(1):8034. PubMed ID: 32415269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RetFM-J, an ImageJ-based module for automated counting and quantifying features of nuclei in retinal whole-mounts.
    Hedberg-Buenz A; Christopher MA; Lewis CJ; Meyer KJ; Rudd DS; Dutca LM; Wang K; Garvin MK; Scheetz TE; Abràmoff MD; Harper MM; Anderson MG
    Exp Eye Res; 2016 May; 146():386-392. PubMed ID: 26283021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-automated technique for labeling and counting of apoptosing retinal cells.
    Bizrah M; Dakin SC; Guo L; Rahman F; Parnell M; Normando E; Nizari S; Davis B; Younis A; Cordeiro MF
    BMC Bioinformatics; 2014 Jun; 15():169. PubMed ID: 24902592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Classification of Cellular Phenotypes Using Machine Learning in Cellprofiler and CellProfiler Analyst.
    Kornhuber M; Dunst S
    Methods Mol Biol; 2022; 2488():207-226. PubMed ID: 35347691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative chromogenic immunohistochemical image analysis in cellprofiler software.
    Tollemar V; Tudzarovski N; Boberg E; Törnqvist Andrén A; Al-Adili A; Le Blanc K; Garming Legert K; Bottai M; Warfvinge G; Sugars RV
    Cytometry A; 2018 Oct; 93(10):1051-1059. PubMed ID: 30089197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QuickCount
    Tiong KH; Chang JK; Pathmanathan D; Hidayatullah Fadlullah MZ; Yee PS; Liew CS; Abdul Rahman ZA; Beh KL; Cheong SC
    Biotechniques; 2018 Dec; 65(6):322-330. PubMed ID: 30477327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis.
    Stirling DR; Carpenter AE; Cimini BA
    Bioinformatics; 2021 Nov; 37(21):3992-3994. PubMed ID: 34478488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality Control for High-Throughput Imaging Experiments Using Machine Learning in Cellprofiler.
    Bray MA; Carpenter AE
    Methods Mol Biol; 2018; 1683():89-112. PubMed ID: 29082489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic counting of retinal ganglion cells in the entire mouse retina based on improved YOLOv5.
    Zhang J; Huo YB; Yang JL; Wang XZ; Yan BY; Du XH; Hao RQ; Yang F; Liu JX; Liu L; Liu Y; Zhang HB
    Zool Res; 2022 Sep; 43(5):738-749. PubMed ID: 35927396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CellProfiler Analyst: data exploration and analysis software for complex image-based screens.
    Jones TR; Kang IH; Wheeler DB; Lindquist RA; Papallo A; Sabatini DM; Golland P; Carpenter AE
    BMC Bioinformatics; 2008 Nov; 9():482. PubMed ID: 19014601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between two programs for image analysis, machine learning and subsequent classification.
    Ribeiro GP; Endringer DC; De Andrade TU; Lenz D
    Tissue Cell; 2019 Jun; 58():12-16. PubMed ID: 31133239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroretinographical and histological study of mouse retina after optic nerve section: a comparison between wild-type and retinal degeneration 1 mice.
    Germain F; Istillarte M; Gómez-Vicente V; Pérez-Rico C; de la Villa P
    Clin Exp Ophthalmol; 2013 Aug; 41(6):593-602. PubMed ID: 23279351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Cell Counting of Macrophages In Situ.
    Bouadi O; Tay TL
    Methods Mol Biol; 2024; 2713():505-518. PubMed ID: 37639144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets.
    Dao D; Fraser AN; Hung J; Ljosa V; Singh S; Carpenter AE
    Bioinformatics; 2016 Oct; 32(20):3210-3212. PubMed ID: 27354701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.