These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27119624)

  • 1. Removal of Selected Metals from Wastewater Using a Constructed Wetland.
    Šíma J; Svoboda L; Pomijová Z
    Chem Biodivers; 2016 May; 13(5):582-90. PubMed ID: 27119624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of selected heavy metals and arsenic in a constructed wetland.
    Šíma J; Svoboda L; Šeda M; Krejsa J; Jahodová J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(1):56-64. PubMed ID: 30663931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium.
    Galletti A; Verlicchi P; Ranieri E
    Sci Total Environ; 2010 Oct; 408(21):5097-105. PubMed ID: 20692017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.
    You SH; Zhang XH; Liu J; Zhu YN; Gu C
    Environ Technol; 2014; 35(1-4):187-94. PubMed ID: 24600856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal fluxes at the sediment-water interface in a free water surface constructed wetland.
    Xu X; Baddar ZE
    Environ Monit Assess; 2022 Jul; 194(8):571. PubMed ID: 35796892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal removal in an UASB-CW system treating municipal wastewater.
    de la Varga D; Díaz MA; Ruiz I; Soto M
    Chemosphere; 2013 Oct; 93(7):1317-23. PubMed ID: 23942017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a low-cost adsorbent for removal of toxic metal ions from wastewater of an electroplating factory.
    Sousa FW; Sousa MJ; Oliveira IR; Oliveira AG; Cavalcante RM; Fechine PB; Neto VO; de Keukeleire D; Nascimento RF
    J Environ Manage; 2009 Aug; 90(11):3340-4. PubMed ID: 19535200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage.
    Xiao H; Zhang S; Zhai J; He Q; Mels A; Ning K; Liu J
    Water Sci Technol; 2013; 67(10):2257-64. PubMed ID: 23676396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior removal of Co
    Abukhadra MR; Dardir FM; Shaban M; Ahmed EA; Soliman MF
    Ecotoxicol Environ Saf; 2018 Aug; 157():358-368. PubMed ID: 29631091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ornamental plants for micropollutant removal in wetland systems.
    Macci C; Peruzzi E; Doni S; Iannelli R; Masciandaro G
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2406-15. PubMed ID: 24798922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sink or source? Insights into the behavior of copper and zinc in the sediment porewater of a constructed wetland by peepers.
    Qin C; Xu X; Peck E
    Sci Total Environ; 2022 May; 821():153127. PubMed ID: 35051472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow "racetrack" wetland treating primary-treated oil industry effluent.
    Mozaffari MH; Shafiepour E; Mirbagheri SA; Rakhshandehroo G; Wallace S; Stefanakis AI
    Water Res; 2021 Jul; 200():117220. PubMed ID: 34038821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Removal by a Free Surface Constructed Wetland and Prediction of Metal Bioavailability and Toxicity with Diffusive Gradients in Thin Films (DGT) and Biotic Ligand Model (BLM).
    Qin C; Xu X; Peck E
    Environ Manage; 2022 May; 69(5):994-1004. PubMed ID: 34811569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic.
    Kröpfelová L; Vymazal J; Svehla J; Stíchová J
    Environ Pollut; 2009 Apr; 157(4):1186-94. PubMed ID: 19124182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of biochar and humic substances for phytoremediation of trace metals in oil sands process affected water.
    Zhao Y; Naeth MA; Wilkinson SR; Dhar A
    Chemosphere; 2024 Aug; 361():142375. PubMed ID: 38772514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.