These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
743 related articles for article (PubMed ID: 27120298)
1. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. Yoo E; Zhou H ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298 [TBL] [Abstract][Full Text] [Related]
2. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries. Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378 [TBL] [Abstract][Full Text] [Related]
3. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface. Kim HM; Hwang JY; Manthiram A; Sun YK ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries. Shu C; Li B; Zhang B; Su D ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196 [TBL] [Abstract][Full Text] [Related]
6. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Luo JY; Cui WJ; He P; Xia YY Nat Chem; 2010 Sep; 2(9):760-5. PubMed ID: 20729897 [TBL] [Abstract][Full Text] [Related]
7. Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries. Landa-Medrano I; Pinedo R; Ortiz-Vitoriano N; de Larramendi IR; Rojo T ChemSusChem; 2015 Dec; 8(23):3932-40. PubMed ID: 26493650 [TBL] [Abstract][Full Text] [Related]
8. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries. Guo G; Yao X; Ang H; Tan H; Zhang Y; Guo Y; Fong E; Yan Q Nanotechnology; 2016 Jan; 27(4):045401. PubMed ID: 26657319 [TBL] [Abstract][Full Text] [Related]
9. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes. Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038 [TBL] [Abstract][Full Text] [Related]
10. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745 [TBL] [Abstract][Full Text] [Related]
11. Influence of Binders and Solvents on Stability of Ru/RuO Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004 [TBL] [Abstract][Full Text] [Related]
12. MnCo Cao X; Sun Z; Zheng X; Jin C; Tian J; Li X; Yang R ChemSusChem; 2018 Feb; 11(3):574-579. PubMed ID: 29235727 [TBL] [Abstract][Full Text] [Related]
13. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries. Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086 [TBL] [Abstract][Full Text] [Related]
15. Mass-transport Control on the Discharge Mechanism in Li-O2 Batteries Using Carbon Cathodes with Varied Porosity. Aklalouch M; Olivares-Marín M; Lee RC; Palomino P; Enciso E; Tonti D ChemSusChem; 2015 Oct; 8(20):3465-71. PubMed ID: 26382302 [TBL] [Abstract][Full Text] [Related]
16. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity. Rinaldi A; Wijaya O; Hoster HE; Yu DY ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
18. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922 [TBL] [Abstract][Full Text] [Related]
19. Binder-free graphene foams for O2 electrodes of Li-O2 batteries. Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594 [TBL] [Abstract][Full Text] [Related]
20. Ordered mesoporous carbon electrodes for Li-O2 batteries. Park JB; Lee J; Yoon CS; Sun YK ACS Appl Mater Interfaces; 2013 Dec; 5(24):13426-31. PubMed ID: 24236914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]