These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27120483)

  • 1. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-Organic Material.
    Li G; Yang H; Li F; Cheng F; Shi W; Chen J; Cheng P
    Inorg Chem; 2016 May; 55(10):4935-40. PubMed ID: 27120483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials.
    Zhang L; Cheng F; Shi W; Chen J; Cheng P
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6398-6406. PubMed ID: 29383935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin Manganese-Based Metal-Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities.
    Li C; Hu X; Tong W; Yan W; Lou X; Shen M; Hu B
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29829-29838. PubMed ID: 28812873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination compounds in lithium storage and lithium-ion transport.
    Liu J; Xie D; Shi W; Cheng P
    Chem Soc Rev; 2020 Mar; 49(6):1624-1642. PubMed ID: 32096508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.
    Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of One-Dimensional Coordination Chains for High-Performance Anode Materials of Lithium-Ion Batteries via a Bottom-Up Approach.
    Du J; Li Y; Liu H; Shi W; Moskaleva LV; Cheng P
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25863-25869. PubMed ID: 31259514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries.
    Zhao L; Zheng L; Li X; Wang H; Lv LP; Chen S; Sun W; Wang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48913-48922. PubMed ID: 34609129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Dimensional Croconate-Based Fe-CP as a High-Performance Anode Material for Lithium-Ion Batteries.
    Zhang L; Zhang X; Gui Y
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility.
    Lee HH; Lee JB; Park Y; Park KH; Okyay MS; Shin DS; Kim S; Park J; Park N; An BK; Jung YS; Lee HW; Lee KT; Hong SY
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22110-22118. PubMed ID: 29901390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-Conductive Metal-Organic Framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): Coexistence of Microporosity and Solid-State Redox Activity.
    Kon K; Uchida K; Fuku K; Yamanaka S; Wu B; Yamazui D; Iguchi H; Kobayashi H; Gambe Y; Honma I; Takaishi S
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38188-38193. PubMed ID: 34353024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox of Dual-Radical Intermediates in a Methylene-Linked Covalent Triazine Framework for High-Performance Lithium-Ion Batteries.
    Wang Z; Gu S; Cao L; Kong L; Wang Z; Qin N; Li M; Luo W; Chen J; Wu S; Liu G; Yuan H; Bai Y; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):514-521. PubMed ID: 33326203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin Cobalt-Based Metal-Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage.
    Ning Y; Lou X; Li C; Hu X; Hu B
    Chemistry; 2017 Nov; 23(63):15984-15990. PubMed ID: 28940576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible Metal and Ligand Redox Chemistry in Two-Dimensional Iron-Organic Framework for Sustainable Lithium-Ion Batteries.
    Geng J; Ni Y; Zhu Z; Wu Q; Gao S; Hua W; Indris S; Chen J; Li F
    J Am Chem Soc; 2023 Jan; 145(3):1564-1571. PubMed ID: 36635874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.
    Maiti S; Pramanik A; Manju U; Mahanty S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16357-63. PubMed ID: 26158782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Metal-Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible Cationic and Anionic Redox Chemistry for High-Energy Sodium-Ion Batteries.
    Fang C; Huang Y; Yuan L; Liu Y; Chen W; Huang Y; Chen K; Han J; Liu Q; Huang Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6793-6797. PubMed ID: 28471036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework.
    Zhang Z; Yoshikawa H; Awaga K
    J Am Chem Soc; 2014 Nov; 136(46):16112-5. PubMed ID: 25365211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 14-Electron Redox Chemistry Enabled by Salen-Based π-Conjugated Framework Polymer Boosting High-Performance Lithium-Ion Storage.
    Zhang X; Kazemi SA; Xu X; Hill JP; Wang J; Li H; Alshehri SM; Ahamad T; Bando Y; Yamauchi Y; Wang Y; Pan L
    Small; 2024 Jul; 20(28):e2309321. PubMed ID: 38528424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium-Lanthanide Bimetallic Metal-Organic Frameworks towards Negative Electrode Materials for Lithium-Ion Batteries.
    Song XY; Zhang YH; Sun PP; Gao J; Shi FN
    Chemistry; 2020 May; 26(25):5654-5661. PubMed ID: 32078190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.