These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 27120649)
1. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process. Komasi M; Sharghi S Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649 [TBL] [Abstract][Full Text] [Related]
2. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods. Nourani V; Farboudfam N Environ Res; 2019 Jan; 168():306-318. PubMed ID: 30366282 [TBL] [Abstract][Full Text] [Related]
3. Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling. Lakshmi PJ; Apaza RA; Alkhayyat A; Marhoon HA; Alameri AA Water Sci Technol; 2022 Dec; 86(12):3205-3222. PubMed ID: 36579879 [TBL] [Abstract][Full Text] [Related]
4. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions. Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854 [TBL] [Abstract][Full Text] [Related]
5. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Abunama T; Othman F; Ansari M; El-Shafie A Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225 [TBL] [Abstract][Full Text] [Related]
6. Prediction of runoff characteristics in permeable pavements using experimental data and intelligent models. Rezaei A; Karami H Environ Sci Pollut Res Int; 2024 Aug; 31(39):52428-52447. PubMed ID: 39147897 [TBL] [Abstract][Full Text] [Related]
7. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Wang WC; Chau KW; Qiu L; Chen YB Environ Res; 2015 May; 139():46-54. PubMed ID: 25684671 [TBL] [Abstract][Full Text] [Related]
8. Daily runoff prediction using the linear and non-linear models. Sharifi A; Dinpashoh Y; Mirabbasi R Water Sci Technol; 2017 Aug; 76(3-4):793-805. PubMed ID: 28799926 [TBL] [Abstract][Full Text] [Related]
9. Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. Try S; Tanaka S; Tanaka K; Sayama T; Oeurng C; Uk S; Takara K; Hu M; Han D PLoS One; 2020; 15(1):e0226814. PubMed ID: 31914161 [TBL] [Abstract][Full Text] [Related]
10. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S. Yuan L; Forshay KJ PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Najafzadeh M; Ghaemi A Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155 [TBL] [Abstract][Full Text] [Related]
12. Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT). Dodangeh E; Shahedi K; Solaimani K; Shiau JT; Abraham J Environ Monit Assess; 2019 Jan; 191(2):67. PubMed ID: 30637530 [TBL] [Abstract][Full Text] [Related]
13. Impact of land cover and land use change on runoff characteristics. Sajikumar N; Remya RS J Environ Manage; 2015 Sep; 161():460-468. PubMed ID: 25575849 [TBL] [Abstract][Full Text] [Related]
14. Use of one-dimensional CNN for input data size reduction in LSTM for improved computational efficiency and accuracy in hourly rainfall-runoff modeling. Ishida K; Ercan A; Nagasato T; Kiyama M; Amagasaki M J Environ Manage; 2024 May; 359():120931. PubMed ID: 38678895 [TBL] [Abstract][Full Text] [Related]
15. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Deo RC; Şahin M Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409 [TBL] [Abstract][Full Text] [Related]
16. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China. Ji X; Shang X; Dahlgren RA; Zhang M Environ Sci Pollut Res Int; 2017 Jul; 24(19):16062-16076. PubMed ID: 28537025 [TBL] [Abstract][Full Text] [Related]
17. Using hydrological simulation to detect human-disturbed epoch in runoff series. Wang GQ; Zhang JY; Pagano TC; Liu YL; Liu CS; Bao ZX; Jin JL; He RM Water Sci Technol; 2015; 71(5):691-9. PubMed ID: 25768215 [TBL] [Abstract][Full Text] [Related]
18. Enhancing rainfall-runoff model accuracy with machine learning models by using soil water index to reflect runoff characteristics. Iamampai S; Talaluxmana Y; Kanasut J; Rangsiwanichpong P Water Sci Technol; 2024 Jan; 89(2):368-381. PubMed ID: 39219136 [TBL] [Abstract][Full Text] [Related]
19. Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models. Mohammadi B; Moazenzadeh R; Christian K; Duan Z Environ Sci Pollut Res Int; 2021 Dec; 28(46):65752-65768. PubMed ID: 34319517 [TBL] [Abstract][Full Text] [Related]
20. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed. Qiu J; Shen Z; Wei G; Wang G; Xie H; Lv G Environ Sci Pollut Res Int; 2018 Mar; 25(7):6514-6531. PubMed ID: 29255977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]