These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 27121163)
1. Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Shinohara H; Kurosaki T Immunol Cell Biol; 2016 Oct; 94(9):821-829. PubMed ID: 27121163 [TBL] [Abstract][Full Text] [Related]
2. Essential function for the kinase TAK1 in innate and adaptive immune responses. Sato S; Sanjo H; Takeda K; Ninomiya-Tsuji J; Yamamoto M; Kawai T; Matsumoto K; Takeuchi O; Akira S Nat Immunol; 2005 Nov; 6(11):1087-95. PubMed ID: 16186825 [TBL] [Abstract][Full Text] [Related]
3. A critical role of TAK1 in B-cell receptor-mediated nuclear factor kappaB activation. Schuman J; Chen Y; Podd A; Yu M; Liu HH; Wen R; Chen ZJ; Wang D Blood; 2009 May; 113(19):4566-74. PubMed ID: 19196865 [TBL] [Abstract][Full Text] [Related]
4. TAK1 maintains the survival of immunoglobulin λ-chain-positive B cells. Shinohara H; Nagashima T; Cascalho MI; Kurosaki T Genes Cells; 2016 Nov; 21(11):1233-1243. PubMed ID: 27696624 [TBL] [Abstract][Full Text] [Related]
5. TGF-β1-activated kinase-1 regulates inflammation and fibrosis in the obstructed kidney. Ma FY; Tesch GH; Ozols E; Xie M; Schneider MD; Nikolic-Paterson DJ Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1410-21. PubMed ID: 21367917 [TBL] [Abstract][Full Text] [Related]
6. Constitutive alternative NF-kappaB signaling promotes marginal zone B-cell development but disrupts the marginal sinus and induces HEV-like structures in the spleen. Guo F; Weih D; Meier E; Weih F Blood; 2007 Oct; 110(7):2381-9. PubMed ID: 17620454 [TBL] [Abstract][Full Text] [Related]
7. Osteopetrosis in TAK1-deficient mice owing to defective NF-κB and NOTCH signaling. Swarnkar G; Karuppaiah K; Mbalaviele G; Chen TH; Abu-Amer Y Proc Natl Acad Sci U S A; 2015 Jan; 112(1):154-9. PubMed ID: 25535389 [TBL] [Abstract][Full Text] [Related]
8. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Shinohara H; Kurosaki T Immunol Rev; 2009 Nov; 232(1):300-18. PubMed ID: 19909372 [TBL] [Abstract][Full Text] [Related]
9. POPX2 phosphatase regulates apoptosis through the TAK1-IKK-NF-κB pathway. Weng T; Koh CG Cell Death Dis; 2017 Sep; 8(9):e3051. PubMed ID: 28906490 [TBL] [Abstract][Full Text] [Related]
10. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling. Moon G; Kim J; Min Y; Wi SM; Shim JH; Chun E; Lee KY Cell Signal; 2015 Dec; 27(12):2524-33. PubMed ID: 26432169 [TBL] [Abstract][Full Text] [Related]
11. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Wan YY; Chi H; Xie M; Schneider MD; Flavell RA Nat Immunol; 2006 Aug; 7(8):851-8. PubMed ID: 16799562 [TBL] [Abstract][Full Text] [Related]
12. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Takahashi H; Jin C; Rajabi H; Pitroda S; Alam M; Ahmad R; Raina D; Hasegawa M; Suzuki Y; Tagde A; Bronson RT; Weichselbaum R; Kufe D Oncogene; 2015 Oct; 34(40):5187-97. PubMed ID: 25659581 [TBL] [Abstract][Full Text] [Related]
13. Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-κB activation. Shinohara H; Behar M; Inoue K; Hiroshima M; Yasuda T; Nagashima T; Kimura S; Sanjo H; Maeda S; Yumoto N; Ki S; Akira S; Sako Y; Hoffmann A; Kurosaki T; Okada-Hatakeyama M Science; 2014 May; 344(6185):760-4. PubMed ID: 24833394 [TBL] [Abstract][Full Text] [Related]
14. Phosphoproteomic analysis of kinase-deficient mice reveals multiple TAK1 targets in osteoclast differentiation. Sumiya E; Negishi-Koga T; Nagai Y; Suematsu A; Suda T; Shinohara M; Sato K; Sanjo H; Akira S; Takayanagi H Biochem Biophys Res Commun; 2015 Aug; 463(4):1284-90. PubMed ID: 26102028 [TBL] [Abstract][Full Text] [Related]
15. Two mechanistically and temporally distinct NF-kappaB activation pathways in IL-1 signaling. Yamazaki K; Gohda J; Kanayama A; Miyamoto Y; Sakurai H; Yamamoto M; Akira S; Hayashi H; Su B; Inoue J Sci Signal; 2009 Oct; 2(93):ra66. PubMed ID: 19843958 [TBL] [Abstract][Full Text] [Related]
16. TAK-ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Santoro R; Carbone C; Piro G; Chiao PJ; Melisi D Drug Resist Updat; 2017 Nov; 33-35():36-42. PubMed ID: 29145973 [TBL] [Abstract][Full Text] [Related]
17. Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Arsura M; Panta GR; Bilyeu JD; Cavin LG; Sovak MA; Oliver AA; Factor V; Heuchel R; Mercurio F; Thorgeirsson SS; Sonenshein GE Oncogene; 2003 Jan; 22(3):412-25. PubMed ID: 12545162 [TBL] [Abstract][Full Text] [Related]
18. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Shim JH; Xiao C; Paschal AE; Bailey ST; Rao P; Hayden MS; Lee KY; Bussey C; Steckel M; Tanaka N; Yamada G; Akira S; Matsumoto K; Ghosh S Genes Dev; 2005 Nov; 19(22):2668-81. PubMed ID: 16260493 [TBL] [Abstract][Full Text] [Related]
19. Downregulation of Jiao HL; Ye YP; Yang RW; Sun HY; Wang SY; Wang YX; Xiao ZY; He LQ; Cai JJ; Wei WT; Chen YR; Gu CC; Cai YL; Hu YT; Lai QH; Qiu JF; Liang L; Cao GW; Liao WT; Ding YQ Clin Cancer Res; 2017 Nov; 23(22):7108-7118. PubMed ID: 28912140 [No Abstract] [Full Text] [Related]
20. Silica induces nuclear factor-kappaB activation through TAK1 and NIK in Rat2 cell line. Cho H; Lee J; Kwak NJ; Lee KH; Rha S; Kim YH; Cho YY; Yang KH; Kim K; Lim Y Toxicol Lett; 2003 Aug; 143(3):323-30. PubMed ID: 12849693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]