BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27121283)

  • 1. A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene.
    Yan R; Lai S; Yang Y; Shi H; Cai Z; Sorrentino V; Du H; Chen H
    Sci Rep; 2016 Apr; 6():25105. PubMed ID: 27121283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes.
    Pierantozzi E; Raucci L; Buonocore S; Rubino EM; Ding Q; Laurino A; Fiore F; Soldaini M; Chen J; Rossi D; Vangheluwe P; Chen H; Sorrentino V
    Sci Rep; 2023 May; 13(1):8195. PubMed ID: 37210436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type 2 diabetes risk alleles near BCAR1 and in ANK1 associate with decreased β-cell function whereas risk alleles near ANKRD55 and GRB14 associate with decreased insulin sensitivity in the Danish Inter99 cohort.
    Harder MN; Ribel-Madsen R; Justesen JM; Sparsø T; Andersson EA; Grarup N; Jørgensen T; Linneberg A; Hansen T; Pedersen O
    J Clin Endocrinol Metab; 2013 Apr; 98(4):E801-6. PubMed ID: 23457408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of Single-Nucleotide Polymorphism in ANK1 with Late-Onset Alzheimer's Disease in Han Chinese.
    Chi S; Song JH; Tan MS; Zhang W; Wang ZX; Jiang T; Tan L; Yu JT
    Mol Neurobiol; 2016 Nov; 53(9):6476-6481. PubMed ID: 26611832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell.
    Kulzer JR; Stitzel ML; Morken MA; Huyghe JR; Fuchsberger C; Kuusisto J; Laakso M; Boehnke M; Collins FS; Mohlke KL
    Am J Hum Genet; 2014 Feb; 94(2):186-97. PubMed ID: 24439111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations.
    Imamura M; Maeda S; Yamauchi T; Hara K; Yasuda K; Morizono T; Takahashi A; Horikoshi M; Nakamura M; Fujita H; Tsunoda T; Kubo M; Watada H; Maegawa H; Okada-Iwabu M; Iwabu M; Shojima N; Ohshige T; Omori S; Iwata M; Hirose H; Kaku K; Ito C; Tanaka Y; Tobe K; Kashiwagi A; Kawamori R; Kasuga M; Kamatani N; ; Nakamura Y; Kadowaki T
    Hum Mol Genet; 2012 Jul; 21(13):3042-9. PubMed ID: 22456796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHOP T/C and C/T haplotypes contribute to early-onset type 2 diabetes in Italians.
    Gragnoli C
    J Cell Physiol; 2008 Nov; 217(2):291-5. PubMed ID: 18680108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits.
    Schleinitz D; Tönjes A; Böttcher Y; Dietrich K; Enigk B; Koriath M; Scholz GH; Blüher M; Zeggini E; McCarthy MI; Kovacs P; Stumvoll M
    Horm Metab Res; 2010 Jan; 42(1):14-22. PubMed ID: 19670153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential promoter activity by nucleotide substitution at a type 2 diabetes genome-wide association study signal upstream of the wolframin gene.
    Ryu J; Lee C
    J Diabetes; 2016 Mar; 8(2):253-9. PubMed ID: 25800097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variation in ATP5O is associated with skeletal muscle ATP50 mRNA expression and glucose uptake in young twins.
    Rönn T; Poulsen P; Tuomi T; Isomaa B; Groop L; Vaag A; Ling C
    PLoS One; 2009; 4(3):e4793. PubMed ID: 19274082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects.
    Sujjitjoon J; Kooptiwut S; Chongjaroen N; Semprasert N; Hanchang W; Chanprasert K; Tangjittipokin W; Yenchitsomanus PT; Plengvidhya N
    J Hum Genet; 2016 Nov; 61(11):943-949. PubMed ID: 27334367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab.
    Matharoo K; Arora P; Bhanwer AJ
    Gene; 2013 Sep; 527(1):228-34. PubMed ID: 23764562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells.
    López Rodríguez M; Kaminska D; Lappalainen K; Pihlajamäki J; Kaikkonen MU; Laakso M
    Genome Med; 2017 Jul; 9(1):63. PubMed ID: 28683826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of single-nucleotide polymorphisms in the suppressor of cytokine signaling 2 (SOCS2) gene with type 2 diabetes in the Japanese.
    Kato H; Nomura K; Osabe D; Shinohara S; Mizumori O; Katashima R; Iwasaki S; Nishimura K; Yoshino M; Kobori M; Ichiishi E; Nakamura N; Yoshikawa T; Tanahashi T; Keshavarz P; Kunika K; Moritani M; Kudo E; Tsugawa K; Takata Y; Hamada D; Yasui N; Miyamoto T; Shiota H; Inoue H; Itakura M
    Genomics; 2006 Apr; 87(4):446-58. PubMed ID: 16406727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of ANK1 variants with new-onset type 2 diabetes in a Han Chinese population from northeast China.
    Sun L; Zhang X; Wang T; Chen M; Qiao H
    Exp Ther Med; 2017 Oct; 14(4):3184-3190. PubMed ID: 28912869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The G/G genotype of a single nucleotide polymorphism at -1066 of c-Jun N-terminal kinase 1 gene (MAPK8) does not affect type 2 diabetes susceptibility despite the specific binding of AP2alpha.
    Osawa H; Yamada K; Tabara Y; Ochi M; Onuma H; Nishida W; Shimizu I; Kawamoto R; Fujii Y; Miki T; Ohashi J; Makino H
    Clin Endocrinol (Oxf); 2008 Jul; 69(1):36-44. PubMed ID: 18036196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic regulatory signature of type 2 diabetes in human skeletal muscle.
    Scott LJ; Erdos MR; Huyghe JR; Welch RP; Beck AT; Wolford BN; Chines PS; Didion JP; Narisu N; Stringham HM; Taylor DL; Jackson AU; Vadlamudi S; Bonnycastle LL; Kinnunen L; Saramies J; Sundvall J; Albanus RD; Kiseleva A; Hensley J; Crawford GE; Jiang H; Wen X; Watanabe RM; Lakka TA; Mohlke KL; Laakso M; Tuomilehto J; Koistinen HA; Boehnke M; Collins FS; Parker SC
    Nat Commun; 2016 Jun; 7():11764. PubMed ID: 27353450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A visfatin promoter polymorphism is associated with low-grade inflammation and type 2 diabetes.
    Zhang YY; Gottardo L; Thompson R; Powers C; Nolan D; Duffy J; Marescotti MC; Avogaro A; Doria A
    Obesity (Silver Spring); 2006 Dec; 14(12):2119-26. PubMed ID: 17189536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic interactions mediate binding of obscurin to small ankyrin 1: biochemical and molecular modeling studies.
    Busby B; Oashi T; Willis CD; Ackermann MA; Kontrogianni-Konstantopoulos A; Mackerell AD; Bloch RJ
    J Mol Biol; 2011 Apr; 408(2):321-34. PubMed ID: 21333652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and molecular insights into the role of PROX1 in glucose metabolism.
    Lecompte S; Pasquetti G; Hermant X; Grenier-Boley B; Gonzalez-Gross M; De Henauw S; Molnar D; Stehle P; Béghin L; Moreno LA; Amouyel P; Dallongeville J; Meirhaeghe A
    Diabetes; 2013 May; 62(5):1738-45. PubMed ID: 23274905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.