These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27121339)

  • 1. COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment.
    Wan J; Gu J; Zhao Q; Liu Y
    Sci Rep; 2016 Apr; 6():25054. PubMed ID: 27121339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production.
    Gu J; Xu G; Liu Y
    Water Res; 2017 Mar; 110():262-269. PubMed ID: 28027525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.
    Ge H; Batstone DJ; Keller J
    Water Res; 2013 Nov; 47(17):6546-57. PubMed ID: 24045213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.
    Picos-Benítez AR; López-Hincapié JD; Chávez-Ramírez AU; Rodríguez-García A
    Water Sci Technol; 2017 Mar; 75(5-6):1351-1361. PubMed ID: 28333051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of methane loss and energy recovery potential in anaerobic reactors treating domestic wastewater.
    Lobato LC; Chernicharo CA; Souza CL
    Water Sci Technol; 2012; 66(12):2745-53. PubMed ID: 23109594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Necessity of direct energy and ammonium recovery for carbon neutral municipal wastewater reclamation in an innovative anaerobic MBR-biochar adsorption-reverse osmosis process.
    Zhang X; Gu J; Liu Y
    Water Res; 2022 Mar; 211():118058. PubMed ID: 35042076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward.
    Liu YJ; Gu J; Liu Y
    Bioresour Technol; 2018 Dec; 269():513-519. PubMed ID: 30190199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring the fate and behavior of TiO
    Mahlalela LC; Ngila JC; Dlamini LN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):794-803. PubMed ID: 28368778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The occurrence of enhanced biological phosphorus removal in a 200,000 m
    Cao Y; Kwok BH; van Loosdrecht MC; Daigger GT; Png HY; Long WY; Chye CS; Ghani YA
    Water Sci Technol; 2017 Feb; 75(3-4):741-751. PubMed ID: 28192367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy towards sustainable and stable nitritation-denitritation in an A-B process for mainstream municipal wastewater treatment.
    Gu J; Yang Q; Liu Y
    Chemosphere; 2018 Feb; 193():921-927. PubMed ID: 29874767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.
    Abiri F; Fallah N; Bonakdarpour B
    Water Sci Technol; 2017 Mar; 75(5-6):1261-1269. PubMed ID: 28333043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of urban wastewater treatment plants in China.
    Zhang QH; Yang WN; Ngo HH; Guo WS; Jin PK; Dzakpasu M; Yang SJ; Wang Q; Wang XC; Ao D
    Environ Int; 2016; 92-93():11-22. PubMed ID: 27045705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descriptive and multivariate analyses of four Tunisian wastewater treatment plants: A comparison between different treatment processes and their efficiency improvement.
    Boujelben I; Samet Y; Messaoud M; Ben Makhlouf M; Maalej S
    J Environ Manage; 2017 Feb; 187():63-70. PubMed ID: 27883940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics.
    Meerburg FA; Boon N; Van Winckel T; Vercamer JAR; Nopens I; Vlaeminck SE
    Bioresour Technol; 2015 Mar; 179():373-381. PubMed ID: 25553568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations.
    Taboada-Santos A; Lema JM; Carballa M
    Waste Manag; 2019 Jun; 92():30-38. PubMed ID: 31160024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-nitrification by encapsulated nitrifiers--a possibility for self-sufficient energy operation of domestic WWTPs.
    Sievers M; Vorlop KD; Hahne J; Schlieker M; Schäfer S
    Water Sci Technol; 2003; 47(11):173-80. PubMed ID: 12906287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR).
    Shin C; McCarty PL; Kim J; Bae J
    Bioresour Technol; 2014 May; 159():95-103. PubMed ID: 24632631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated upflow anaerobic fixed-bed and single-stage step-feed process for mainstream deammonification: A step further towards sustainable municipal wastewater reclamation.
    Gu J; Zhang M; Wang S; Liu Y
    Sci Total Environ; 2019 Aug; 678():559-564. PubMed ID: 31078846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.
    Shi X; Lefebvre O; Ng KK; Ng HY
    Bioresour Technol; 2014 Feb; 153():79-86. PubMed ID: 24355500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.
    Chen WH; Yang JH; Yuan CS; Yang YH
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20449-20461. PubMed ID: 27460025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.