These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 27121576)

  • 21. Synaptogenesis of electrical and GABAergic synapses of fast-spiking inhibitory neurons in the neocortex.
    Pangratz-Fuehrer S; Hestrin S
    J Neurosci; 2011 Jul; 31(30):10767-75. PubMed ID: 21795529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
    Oren I; Mann EO; Paulsen O; Hájos N
    J Neurosci; 2006 Sep; 26(39):9923-34. PubMed ID: 17005856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Balance of inhibitory and excitatory synaptic activity is altered in fast-spiking interneurons in experimental cortical dysplasia.
    Zhou FW; Chen HX; Roper SN
    J Neurophysiol; 2009 Oct; 102(4):2514-25. PubMed ID: 19692507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Excitation of Distally versus Proximally Targeting Cortical Interneurons by Unitary Thalamocortical Bursts.
    Hu H; Agmon A
    J Neurosci; 2016 Jun; 36(26):6906-16. PubMed ID: 27358449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex.
    Fanselow EE; Richardson KA; Connors BW
    J Neurophysiol; 2008 Nov; 100(5):2640-52. PubMed ID: 18799598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices.
    Jiang B; Kitamura A; Yasuda H; Sohya K; Maruyama A; Yanagawa Y; Obata K; Tsumoto T
    Eur J Neurosci; 2004 Aug; 20(3):709-18. PubMed ID: 15255981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spike transmission and synchrony detection in networks of GABAergic interneurons.
    Galarreta M; Hestrin S
    Science; 2001 Jun; 292(5525):2295-9. PubMed ID: 11423653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of post-synaptic kainate receptors during synaptic transmission between unitary connections in rat neocortex.
    Ali AB
    Eur J Neurosci; 2003 Jun; 17(11):2344-50. PubMed ID: 12814386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nicotinic activity depresses synaptic potentiation in layer V pyramidal neurons of mouse insular cortex.
    Sato H; Kawano T; Yin DX; Kato T; Toyoda H
    Neuroscience; 2017 Sep; 358():13-27. PubMed ID: 28663092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.
    Hu H; Agmon A
    J Neurophysiol; 2015 Jul; 114(1):624-37. PubMed ID: 25972585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits.
    Wahlstrom-Helgren S; Klyachko VA
    J Neurophysiol; 2016 Dec; 116(6):2564-2575. PubMed ID: 27605532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice.
    Traub RD; Pais I; Bibbig A; Lebeau FE; Buhl EH; Garner H; Monyer H; Whittington MA
    J Neurophysiol; 2005 Aug; 94(2):1225-35. PubMed ID: 15728773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model.
    Bibbig A; Traub RD; Whittington MA
    J Neurophysiol; 2002 Oct; 88(4):1634-54. PubMed ID: 12364494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection.
    Angulo MC; Staiger JF; Rossier J; Audinat E
    J Neurosci; 1999 Mar; 19(5):1566-76. PubMed ID: 10024344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of neuronal migration disorders in neocortical structures. II. Intracellular in vitro recordings.
    Luhmann HJ; Karpuk N; Qü M; Zilles K
    J Neurophysiol; 1998 Jul; 80(1):92-102. PubMed ID: 9658031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses.
    Bacci A; Rudolph U; Huguenard JR; Prince DA
    J Neurosci; 2003 Oct; 23(29):9664-74. PubMed ID: 14573546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype.
    Feliciano P; Matos H; Andrade R; Bykhovskaia M
    J Neurosci; 2017 Feb; 37(7):1757-1771. PubMed ID: 28087765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hippocampal CA1 lacunosum-moleculare interneurons: comparison of effects of anoxia on excitatory and inhibitory postsynaptic currents.
    Khazipov R; Congar P; Ben-Ari Y
    J Neurophysiol; 1995 Nov; 74(5):2138-49. PubMed ID: 8592202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice.
    Vecchia D; Tottene A; van den Maagdenberg AM; Pietrobon D
    Neurobiol Dis; 2014 Sep; 69(100):225-34. PubMed ID: 24907493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.