These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 27121577)
1. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. Hight AE; Kalluri R J Neurophysiol; 2016 Aug; 116(2):503-21. PubMed ID: 27121577 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons. Ventura CM; Kalluri R J Neurosci; 2019 Apr; 39(15):2860-2876. PubMed ID: 30696730 [TBL] [Abstract][Full Text] [Related]
3. Ion channels set spike timing regularity of mammalian vestibular afferent neurons. Kalluri R; Xue J; Eatock RA J Neurophysiol; 2010 Oct; 104(4):2034-51. PubMed ID: 20660422 [TBL] [Abstract][Full Text] [Related]
5. Biophysical properties of the silent and activated rat sympathetic neuron following denervation. Sacchi O; Rossi ML; Canella R; Fesce R Neuroscience; 2005; 135(1):31-45. PubMed ID: 16084656 [TBL] [Abstract][Full Text] [Related]
6. Low-voltage-activated potassium channels underlie the regulation of intrinsic firing properties of rat vestibular ganglion cells. Iwasaki S; Chihara Y; Komuta Y; Ito K; Sahara Y J Neurophysiol; 2008 Oct; 100(4):2192-204. PubMed ID: 18632889 [TBL] [Abstract][Full Text] [Related]
7. Synaptic integration in a model of cerebellar granule cells. Gabbiani F; Midtgaard J; Knöpfel T J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078 [TBL] [Abstract][Full Text] [Related]
8. Compartmental models of type A and type B guinea pig medial vestibular neurons. Quadroni R; Knöpfel T J Neurophysiol; 1994 Oct; 72(4):1911-24. PubMed ID: 7529823 [TBL] [Abstract][Full Text] [Related]
9. Synaptic current at the rat ganglionic synapse and its interactions with the neuronal voltage-dependent currents. Sacchi O; Rossi ML; Canella R; Fesce R J Neurophysiol; 1998 Feb; 79(2):727-42. PubMed ID: 9463436 [TBL] [Abstract][Full Text] [Related]
10. Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus. Cao XJ; Oertel D Hear Res; 2017 Mar; 345():57-68. PubMed ID: 28065805 [TBL] [Abstract][Full Text] [Related]
11. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Tuckwell HC; Penington NJ Prog Neurobiol; 2014 Jul; 118():59-101. PubMed ID: 24784445 [TBL] [Abstract][Full Text] [Related]
12. Potassium currents and excitability in second-order auditory and vestibular neurons. Peusner KD; Gamkrelidze G; Giaume C J Neurosci Res; 1998 Sep; 53(5):511-20. PubMed ID: 9726422 [TBL] [Abstract][Full Text] [Related]
13. Synaptic and somatic effects of axotomy in the intact, innervated rat sympathetic neuron. Sacchi O; Rossi ML; Canella R; Fesce R J Neurophysiol; 2006 May; 95(5):2832-44. PubMed ID: 16452258 [TBL] [Abstract][Full Text] [Related]
14. A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons. Wilson CJ; Weyrick A; Terman D; Hallworth NE; Bevan MD J Neurophysiol; 2004 May; 91(5):1963-80. PubMed ID: 14702332 [TBL] [Abstract][Full Text] [Related]
15. Effects of transient, persistent, and resurgent sodium currents on excitability and spike regularity in vestibular ganglion neurons. Baeza-Loya S; Eatock RA bioRxiv; 2024 Jul; ():. PubMed ID: 38076890 [TBL] [Abstract][Full Text] [Related]
16. Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing. Koch U; Grothe B J Neurophysiol; 2003 Dec; 90(6):3679-87. PubMed ID: 12968010 [TBL] [Abstract][Full Text] [Related]
17. Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study. Kopysova IL; Korogod SM; Durand J; Tyc-Dumont S J Neurophysiol; 1996 Aug; 76(2):1015-24. PubMed ID: 8871216 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of chicken vestibular nucleus neurons to unilateral vestibular ganglionectomy. Shao M; Popratiloff A; Yi J; Lerner A; Hirsch JC; Peusner KD Neuroscience; 2009 Jul; 161(4):988-1007. PubMed ID: 19375485 [TBL] [Abstract][Full Text] [Related]
19. Electrophysiological properties of rat pontine nuclei neurons In vitro. I. Membrane potentials and firing patterns. Schwarz C; Möck M; Thier P J Neurophysiol; 1997 Dec; 78(6):3323-37. PubMed ID: 9405547 [TBL] [Abstract][Full Text] [Related]
20. Activation and deactivation of voltage-dependent K+ channels during synaptically driven action potentials in the MNTB. Klug A; Trussell LO J Neurophysiol; 2006 Sep; 96(3):1547-55. PubMed ID: 16775198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]