These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27121584)

  • 21. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The generation of direction selectivity in the auditory system.
    Kuo RI; Wu GK
    Neuron; 2012 Mar; 73(5):1016-27. PubMed ID: 22405210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices.
    Zhang S; Oertel D
    J Neurophysiol; 1993 May; 69(5):1384-97. PubMed ID: 8389821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role for electrical synapses in shaping the output of coupled peptidergic neurons from Lymnaea.
    Beekharry CC; Zhu GZ; Magoski NS
    Brain Res; 2015 Apr; 1603():8-21. PubMed ID: 25641041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kv3 K
    Olsen T; Capurro A; Pilati N; Large CH; Hamann M
    Neuropharmacology; 2018 May; 133():319-333. PubMed ID: 29421326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity.
    Hull C; Regehr WG
    Neuron; 2012 Jan; 73(1):149-58. PubMed ID: 22243753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fine structure of the cell clusters in the cochlear nerve root: stellate, granule, and mitt cells offer insights into the synaptic organization of local circuit neurons.
    Hutson KA; Morest DK
    J Comp Neurol; 1996 Jul; 371(3):397-414. PubMed ID: 8842895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium permeable AMPA receptor-dependent long lasting plasticity of intrinsic excitability in fast spiking interneurons of the dentate gyrus decreases inhibition in the granule cell layer.
    Dasgupta D; Sikdar SK
    Hippocampus; 2015 Mar; 25(3):269-85. PubMed ID: 25252134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical synapses and the development of inhibitory circuits in the thalamus.
    Zolnik TA; Connors BW
    J Physiol; 2016 May; 594(10):2579-92. PubMed ID: 26864476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Somatosensory effects on neurons in dorsal cochlear nucleus.
    Young ED; Nelken I; Conley RA
    J Neurophysiol; 1995 Feb; 73(2):743-65. PubMed ID: 7760132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions.
    Ixmatlahua DJ; Vizcarra B; Gómez-Lira G; Romero-Maldonado I; Ortiz F; Rojas-Piloni G; Gutiérrez R
    J Neurosci; 2020 Jun; 40(24):4661-4672. PubMed ID: 32393538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A network of electrically coupled interneurons drives synchronized inhibition in neocortex.
    Beierlein M; Gibson JR; Connors BW
    Nat Neurosci; 2000 Sep; 3(9):904-10. PubMed ID: 10966621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connexon connexions in the thalamocortical system.
    Cruikshank SJ; Landisman CE; Mancilla JG; Connors BW
    Prog Brain Res; 2005; 149():41-57. PubMed ID: 16226575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mossy fiber-granule cell synapses in the normal and epileptic rat dentate gyrus studied with minimal laser photostimulation.
    Molnár P; Nadler JV
    J Neurophysiol; 1999 Oct; 82(4):1883-94. PubMed ID: 10515977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus.
    Roberts MT; Trussell LO
    J Neurophysiol; 2010 Nov; 104(5):2462-73. PubMed ID: 20719922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maturation of synapses and electrical properties of cells in the cochlear nuclei.
    Wu SH; Oertel D
    Hear Res; 1987; 30(1):99-110. PubMed ID: 3680058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus.
    Golding NL; Oertel D
    J Neurophysiol; 1997 Jul; 78(1):248-60. PubMed ID: 9242277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission.
    Perez-Rosello T; Anderson CT; Ling C; Lippard SJ; Tzounopoulos T
    Neurobiol Dis; 2015 Sep; 81():14-9. PubMed ID: 25796568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.