These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27121686)

  • 1. Electrochemical de-alloying in two dimensions: role of the local atomic environment.
    Damian A; Maroun F; Allongue P
    Nanoscale; 2016 Aug; 8(29):13985-96. PubMed ID: 27121686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical dealloying of Al2(Au,X) (X = Pt, Pd, PtPd, Ni, Co and NiCo) alloys in NaCl aqueous solution.
    Wang Y; Xu J; Wu B
    Phys Chem Chem Phys; 2013 Apr; 15(15):5499-509. PubMed ID: 23455475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of the influence of the anodic potential on metal-components dissolution from dental alloys].
    Kobayashi H
    Shikwa Gakuho; 1989 Nov; 89(11):1679-97. PubMed ID: 2488976
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Gößler M; Hengge E; Bogar M; Albu M; Knez D; Amenitsch H; Würschum R
    J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(8):4037-4047. PubMed ID: 35273676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length scales in alloy dissolution and measurement of absolute interfacial free energy.
    Rugolo J; Erlebacher J; Sieradzki K
    Nat Mater; 2006 Dec; 5(12):946-9. PubMed ID: 17099702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of electrochemical surface alloying and dealloying by in situ high-speed STM.
    Taranovskyy A; Guézo S; Matsushima H; Gründer Y; Magnussen OM
    Phys Chem Chem Phys; 2012 Aug; 14(30):10579-88. PubMed ID: 22751488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective growth and dissolution of Ni on a PdAu bimetallic surface by in situ STM: determining the relative adsorbate-substrate interaction energy.
    Damian A; Maroun F; Allongue P
    Phys Rev Lett; 2009 May; 102(19):196101. PubMed ID: 19518976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional connective nanostructures of electrodeposited Zn on Au (111) induced by spinodal decomposition.
    Dogel J; Tsekov R; Freyland W
    J Chem Phys; 2005 Mar; 122(9):094703. PubMed ID: 15836158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent inverse Gibbs-Thomson effect in dealloyed nanoporous nanoparticles.
    McCue I; Snyder J; Li X; Chen Q; Sieradzki K; Erlebacher J
    Phys Rev Lett; 2012 Jun; 108(22):225503. PubMed ID: 23003619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution.
    Zhang Q; Zhang Z
    Phys Chem Chem Phys; 2010 Feb; 12(7):1453-72. PubMed ID: 20126758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of the Iridium Alloying and Hydrogen Sorption on the Physicochemical and Electrochemical Properties of Palladium.
    Hubkowska K; Pająk M; Czerwiński A
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical corrosion and surface analyses of a ni-cr alloy in bleaching agents.
    Tamam E; Aydın AK; Bilgiç S
    J Prosthodont; 2014 Oct; 23(7):549-58. PubMed ID: 24750374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some Aspects on the One-Pot Fabrication of Nanoporous Pd-Au Surface Films by Electrochemical Alloying/Dealloying of (Pd-Au)-Zn from a Chlorozincate Ionic Liquid.
    Chiu HY; Liu YC; Hsieh YT; Sun IW
    ACS Omega; 2017 Aug; 2(8):4911-4919. PubMed ID: 31457770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces.
    Maurice V; Peng H; Klein LH; Seyeux A; Zanna S; Marcus P
    Faraday Discuss; 2015; 180():151-70. PubMed ID: 25898180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction.
    Atkin R; Borisenko N; Drüschler M; el-Abedin SZ; Endres F; Hayes R; Huber B; Roling B
    Phys Chem Chem Phys; 2011 Apr; 13(15):6849-57. PubMed ID: 21399819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing Electrochemical Dealloying by Single-Nanoparticle Collision.
    Hao R; Zhang B
    Anal Chem; 2016 Sep; 88(17):8728-34. PubMed ID: 27476812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of oxygen reduction electrocatalysts in an acidic environment: density functional theory study.
    Gu Z; Balbuena PB
    J Phys Chem A; 2006 Aug; 110(32):9783-7. PubMed ID: 16898677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the adsorption of N species on the anodic dissolution of Ni.
    Muñoz AG; Benitez G; Vela ME; Salvarezza RC
    Langmuir; 2004 Mar; 20(6):2361-8. PubMed ID: 15835697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.