These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 27121815)

  • 41. Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust.
    Bao Y; Wang J; He F; Ma H; Wang H
    Genet Mol Res; 2012 May; 11(3):3198-206. PubMed ID: 22653669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agribiotechnology: Blue-sky rice.
    Dayton L
    Nature; 2014 Oct; 514(7524):S52-4. PubMed ID: 25368887
    [No Abstract]   [Full Text] [Related]  

  • 43. [Genome and plasmon effects on expression of defeated genes of resistance to brown rust in wheat].
    Buloĭchik AA; Voluevich EA; Mikhno AM
    Tsitol Genet; 2002; 36(2):11-9. PubMed ID: 12140892
    [No Abstract]   [Full Text] [Related]  

  • 44. Plant pathology. The famine fighter's last battle.
    Stokstad E
    Science; 2009 May; 324(5928):710-2. PubMed ID: 19423791
    [No Abstract]   [Full Text] [Related]  

  • 45. CRISPR, microbes and more are joining the war against crop killers.
    Borel B
    Nature; 2017 Mar; 543(7645):302-304. PubMed ID: 28300126
    [No Abstract]   [Full Text] [Related]  

  • 46. Dissecting genetic and non-genetic sources of long-term yield trend in German official variety trials.
    Piepho HP; Laidig F; Drobek T; Meyer U
    Theor Appl Genet; 2014 May; 127(5):1009-18. PubMed ID: 24553961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epidemiological analysis of take-all decline in winter wheat.
    Bailey DJ; Paveley N; Spink J; Lucas P; Gilligan CA
    Phytopathology; 2009 Jul; 99(7):861-8. PubMed ID: 19522584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Induced resistance to biotic stress.(Preface).
    Roberts M
    J Exp Bot; 2013 Mar; 64(5):1235-6. PubMed ID: 23616991
    [No Abstract]   [Full Text] [Related]  

  • 49. Endophytic Fungi from the Four Staple Crops and Their Secondary Metabolites.
    Fan Y; Shi B
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wheat archive links long-term fungal pathogen population dynamics to air pollution.
    Bearchell SJ; Fraaije BA; Shaw MW; Fitt BD
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5438-42. PubMed ID: 15809418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extending the durability of cultivar resistance by limiting epidemic growth rates.
    Carolan K; Helps J; van den Berg F; Bain R; Paveley N; van den Bosch F
    Proc Biol Sci; 2017 Sep; 284(1863):. PubMed ID: 28931732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Food security in 2044: How do we control the fungal threat?
    Kettles GJ; Luna E
    Fungal Biol; 2019 Aug; 123(8):558-564. PubMed ID: 31345410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in the improvement of genetic resistance against disease in vegetable crops.
    Thomas WJW; Amas JC; Dolatabadian A; Huang S; Zhang F; Zandberg JD; Neik TX; Edwards D; Batley J
    Plant Physiol; 2024 Sep; 196(1):32-46. PubMed ID: 38796840
    [No Abstract]   [Full Text] [Related]  

  • 54. Wheat blast: from its origins in South America to its emergence as a global threat.
    Ceresini PC; Castroagudín VL; Rodrigues FÁ; Rios JA; Aucique-Pérez CE; Moreira SI; Croll D; Alves E; de Carvalho G; Maciel JLN; McDonald BA
    Mol Plant Pathol; 2019 Feb; 20(2):155-172. PubMed ID: 30187616
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cold-Active Lytic Enzymes and Their Applicability in the Biocontrol of Postharvest Fungal Pathogens.
    de Oliveira TB; de Lucas RC; Scarcella ASA; Pasin TM; Contato AG; Polizeli MLTM
    J Agric Food Chem; 2020 Jun; 68(24):6461-6463. PubMed ID: 32497435
    [No Abstract]   [Full Text] [Related]  

  • 56. Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus.
    Latorre SM; Were VM; Foster AJ; Langner T; Malmgren A; Harant A; Asuke S; Reyes-Avila S; Gupta DR; Jensen C; Ma W; Mahmud NU; Mehebub MS; Mulenga RM; Muzahid ANM; Paul SK; Rabby SMF; Rahat AAM; Ryder L; Shrestha RK; Sichilima S; Soanes DM; Singh PK; Bentley AR; Saunders DGO; Tosa Y; Croll D; Lamour KH; Islam T; Tembo B; Win J; Talbot NJ; Burbano HA; Kamoun S
    PLoS Biol; 2023 Apr; 21(4):e3002052. PubMed ID: 37040332
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pests on the move.
    Gross M
    Curr Biol; 2013 Oct; 23(19):R855-7. PubMed ID: 24251330
    [No Abstract]   [Full Text] [Related]  

  • 58. A global surveillance system for crop diseases.
    Carvajal-Yepes M; Cardwell K; Nelson A; Garrett KA; Giovani B; Saunders DGO; Kamoun S; Legg JP; Verdier V; Lessel J; Neher RA; Day R; Pardey P; Gullino ML; Records AR; Bextine B; Leach JE; Staiger S; Tohme J
    Science; 2019 Jun; 364(6447):1237-1239. PubMed ID: 31249049
    [No Abstract]   [Full Text] [Related]  

  • 59. Agronomy: Five crop researchers who could change the world.
    Marris E
    Nature; 2008 Dec; 456(7222):563-8. PubMed ID: 19052600
    [No Abstract]   [Full Text] [Related]  

  • 60. Compatible host-microbe interactions: mechanistic studies enabling future agronomical solutions.
    Kogel KH
    J Plant Physiol; 2008 Jan; 165(1):1-4. PubMed ID: 17961816
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.