BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27121864)

  • 1. Proof of concept for inhibiting metastasis: circulating tumor cell-triggered localized release of anticancer agent via a structure-switching aptamer.
    Chen N; Yang X; Wang Q; Jian L; Shi H; Qin S; Wang K; Huang J; Liu W
    Chem Commun (Camb); 2016 May; 52(41):6789-92. PubMed ID: 27121864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamer/Graphene Quantum Dots Nanocomposite Capped Fluorescent Mesoporous Silica Nanoparticles for Intracellular Drug Delivery and Real-Time Monitoring of Drug Release.
    Zheng FF; Zhang PH; Xi Y; Chen JJ; Li LL; Zhu JJ
    Anal Chem; 2015 Dec; 87(23):11739-45. PubMed ID: 26524192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-controlled delivery of a potent analogue of doxorubicin.
    Dupart PS; Mitra K; Lyons CE; Hartman MCT
    Chem Commun (Camb); 2019 May; 55(39):5607-5610. PubMed ID: 31021353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of Doxorubicin with Gemcitabine-Incorporated G-Quadruplex Aptamer Showed Synergistic and Selective Anticancer Effect in Breast Cancer Cells.
    Joshi M; Choi JS; Park JW; Doh KO
    J Microbiol Biotechnol; 2019 Nov; 29(11):1799-1805. PubMed ID: 31546295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro.
    Alibolandi M; Ramezani M; Sadeghi F; Abnous K; Hadizadeh F
    Int J Pharm; 2015 Feb; 479(1):241-51. PubMed ID: 25529433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-drug conjugation for targeted tumor cell therapy.
    Donovan MJ; Meng L; Chen T; Zhang Y; Sefah K; Tan W
    Methods Mol Biol; 2011; 764():141-52. PubMed ID: 21748638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy.
    Luo YL; Shiao YS; Huang YF
    ACS Nano; 2011 Oct; 5(10):7796-804. PubMed ID: 21942498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer CaCO3 nanostructures: a facile, pH-responsive, specific platform for targeted anticancer theranostics.
    Zhou C; Chen T; Wu C; Zhu G; Qiu L; Cui C; Hou W; Tan W
    Chem Asian J; 2015 Jan; 10(1):166-71. PubMed ID: 25377905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microenvironmental Control of MUC1 Aptamer-Guided Acid-Labile Nanoconjugate within Injectable Microporous Hydrogels.
    Xu C; Han X; Jiang Y; Yuan S; Wu Z; Wu Z; Qi X
    Bioconjug Chem; 2017 Oct; 28(10):2530-2537. PubMed ID: 28949511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro.
    Zhang ZY; Xu YD; Ma YY; Qiu LL; Wang Y; Kong JL; Xiong HM
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4127-31. PubMed ID: 23463695
    [No Abstract]   [Full Text] [Related]  

  • 11. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems.
    Sukhorukova IV; Zhitnyak IY; Kovalskii AM; Matveev AT; Lebedev OI; Li X; Gloushankova NA; Golberg D; Shtansky DV
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17217-25. PubMed ID: 26192448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin.
    Maney V; Singh M
    Nanomedicine (Lond); 2017 Nov; 12(21):2625-2640. PubMed ID: 28965478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer nano-prodrugs with drug release triggered by intracellular dissolution and hydrogen peroxide response.
    Shibata A; Koseki Y; Tanita K; Kitajima S; Oka K; Maruoka K; Suzuki R; Thi Ngoc Dao A; Kasai H
    Chem Commun (Camb); 2024 Jun; 60(50):6427-6430. PubMed ID: 38829169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Stimuli-Responsive Controlled Release Nanocarrier for Multidrug Resistance Cancer Therapy.
    Jiao X; Wang Z; Wang F; Wen Y
    Chemphyschem; 2019 Dec; 20(24):3271-3275. PubMed ID: 31654459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates.
    Zhang L; Li Y; Jin Z; Yu JC; Chan KM
    Nanoscale; 2015 Aug; 7(29):12614-24. PubMed ID: 26147639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High expression of MnSOD promotes survival of circulating breast cancer cells and increases their resistance to doxorubicin.
    Fu A; Ma S; Wei N; Tan BX; Tan EY; Luo KQ
    Oncotarget; 2016 Aug; 7(31):50239-50257. PubMed ID: 27384484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxylated hydroxyethyl starch: a novel polysaccharide for the delivery of doxorubicin.
    Paleos CM; Sideratou Z; Theodossiou TA; Tsiourvas D
    Chem Biol Drug Des; 2015 May; 85(5):653-8. PubMed ID: 25303215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polyvalent aptamer system for targeted drug delivery.
    Zhang Z; Ali MM; Eckert MA; Kang DK; Chen YY; Sender LS; Fruman DA; Zhao W
    Biomaterials; 2013 Dec; 34(37):9728-35. PubMed ID: 24044994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer-based liposomes improve specific drug loading and release.
    Plourde K; Derbali RM; Desrosiers A; Dubath C; Vallée-Bélisle A; Leblond J
    J Control Release; 2017 Apr; 251():82-91. PubMed ID: 28238787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of molecular structure on the anticancer drug release rate from prodrug nanoparticles.
    Ikuta Y; Koseki Y; Onodera T; Oikawa H; Kasai H
    Chem Commun (Camb); 2015 Aug; 51(64):12835-8. PubMed ID: 26165183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.