BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27122137)

  • 1. Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers.
    Jiang X; Gao H; Zhang L; Liang H; Zhu X
    Sci Rep; 2016 Apr; 6():25319. PubMed ID: 27122137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).
    Pérez-Morales A; Sarma SS; Nandini S
    J Environ Biol; 2014 Nov; 35(6):1013-20. PubMed ID: 25522500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cladoceran offspring tolerance to toxic Microcystis is promoted by maternal warming.
    Lyu K; Zhang L; Gu L; Zhu X; Wilson AE; Yang Z
    Environ Pollut; 2017 Aug; 227():451-459. PubMed ID: 28486188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton.
    Harke MJ; Jankowiak JG; Morrell BK; Gobler CJ
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications.
    Guo N; Xie P
    Environ Pollut; 2006 Oct; 143(3):513-8. PubMed ID: 16448731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effects of the pesticide spinetoram and the cyanobacterium Microcystis on the water flea Daphnia pulex.
    Shen Q; Zhan Y; Jia X; Li B; Zhu X; Gao T
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47148-47158. PubMed ID: 35175534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of potentially toxic cyanobacteria in crustacean zooplankton diet in a eutrophic lake.
    Agasild H; Panksep K; Tõnno I; Blank K; Kõiv T; Freiberg R; Laugaste R; Jones RI; Nõges P; Nõges T
    Harmful Algae; 2019 Nov; 89():101688. PubMed ID: 31672224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal effects of inducible tolerance against the toxic cyanobacterium Microcystis aeruginosa in the grazer Daphnia carinata.
    Jiang X; Yang W; Zhao S; Liang H; Zhao Y; Chen L; Li R
    Environ Pollut; 2013 Jul; 178():142-6. PubMed ID: 23570781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation dynamics and evolutionary rescue under sulfide selection in cyanobacteria: a comparative study between Microcystis aeruginosa and Oscillatoria sp. (cyanobacteria).
    Martín-Clemente E; Melero-Jiménez IJ; Bañares-España E; Flores-Moya A; García-Sánchez MJ
    J Phycol; 2019 Dec; 55(6):1348-1360. PubMed ID: 31393602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity?
    Hairston NG; Holtmeier CL; Lampert W; Weider LJ; Post DM; Fischer JM; Cáceres CE; Fox JA; Gaedke U
    Evolution; 2001 Nov; 55(11):2203-14. PubMed ID: 11794781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clonal variation in growth plasticity within a Bosmina longirostris population: the potential for resistance to toxic cyanobacteria.
    Jiang X; Li Q; Liang H; Zhao S; Zhang L; Zhao Y; Chen L; Yang W; Xiang X
    PLoS One; 2013; 8(9):e73540. PubMed ID: 24039976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional and toxicity constraints of phytoplankton from a Brazilian reservoir to the fitness of cladoceran species.
    Ferrão-Filho ADS; Dias TM; Pereira UJ; Dos Santos JAA; Kozlowsky-Suzuki B
    Environ Sci Pollut Res Int; 2019 May; 26(13):12881-12893. PubMed ID: 30887454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.
    Kuster CJ; Von Elert E
    PLoS One; 2013; 8(5):e62658. PubMed ID: 23650523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Daphnia's antioxidant system to spatial heterogeneity in Cyanobacteria concentrations in a lowland reservoir.
    Wojtal-Frankiewicz A; Bernasińska J; Frankiewicz P; Gwoździński K; Jurczak T
    PLoS One; 2014; 9(11):e112597. PubMed ID: 25380273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals.
    Mohamed ZA
    Ecotoxicol Environ Saf; 2001 Sep; 50(1):4-8. PubMed ID: 11534946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-toxic and toxic Microcystis aeruginosa reduce the tolerance of Daphnia pulex to low calcium in different degrees: Based on the changes in the key life-history traits.
    Huang J; Li Y; Zhou Q; Sun Y; Zhang L; Gu L; Lyu K; Huang Y; Chen Y; Yang Z
    Chemosphere; 2020 Jun; 248():126101. PubMed ID: 32045977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcystis aeruginosa strengthens the advantage of Daphnia similoides in competition with Moina micrura.
    Tang H; Hou X; Xue X; Chen R; Zhu X; Huang Y; Chen Y
    Sci Rep; 2017 Aug; 7(1):10245. PubMed ID: 28860619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Draft genomes for one Microcystis-resistant and one Microcystis-sensitive strain of the water flea, Daphnia pulicaria.
    Clark AD; Howell BK; Wilson AE; Schwartz TS
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34849790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations.
    Fulton RS; Paerl HW
    Oecologia; 1988 Aug; 76(3):383-389. PubMed ID: 28312018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature behavior of the cladoceran Simocephalus vetulus O.F. Müller, 1776 (Crustacea, Cladocera) from the Rybinsk water reservoir.
    Verbitsky VB; Verbitskaya TI; Malysheva OA
    Dokl Biol Sci; 2014 Mar; 455(1):91-3. PubMed ID: 24795179
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.